Previous |  Up |  Next

Article

Title: Countable products of Čech-scattered supercomplete spaces (English)
Author: Hohti, Aarno
Author: Ziqiu, Yun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 3
Year: 1999
Pages: 569-583
Summary lang: English
.
Category: math
.
Summary: We prove by using well-founded trees that a countable product of supercomplete spaces, scattered with respect to Čech-complete subsets, is supercomplete. This result extends results given in [Alstera], [Friedlera], [Frolika], [HohtiPelantb], [Pelanta] and its proof improves that given in [HohtiPelantb]. (English)
Keyword: supercomplete
Keyword: product spaces
Keyword: Čech-complete
Keyword: C-scattered
Keyword: uniform space
Keyword: paracompact
Keyword: locally fine
MSC: 54B10
MSC: 54E15
idZBL: Zbl 1003.54006
idMR: MR1708354
.
Date available: 2009-09-24T10:25:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127511
.
Reference: [1] Alster, K.:: A class of spaces whose Cartesian product with every hereditarily Lindelöf space is Lindelöf.-.Fund. Math. 114:3 (1981), 173–181 [Alstera]. Zbl 0369.54005, MR 0644402, 10.4064/fm-114-3-173-181
Reference: [2] Arhangel’skii, A.:: On a class of spaces containing all metric and all locally bicompact spaces.-.Soviet Math. Dokl. 4 (1963), 1051–1055 [Arhangelskia].
Reference: [3] Corson, H.:: Determination of paracompactness by uniformities.-.Amer. J. Math. 80 (1958), 185–190 [Corsona]. Zbl 0080.15803, MR 0094780, 10.2307/2372828
Reference: [4] Engelking, R.:: Outline of General Topology.-.Polish Scientific Publishers, 1968 [Engelkinga]. Zbl 0157.53001, MR 0230273
Reference: [5] Friedler, L. M., H. W. Martin and S. W. Williams:: Paracompact C-scattered spaces.-.Pacific Math. Journal 129:2 (1987), 277–296 [Friedlera]. MR 0909031, 10.2140/pjm.1987.129.277
Reference: [6] Frolík, Z.:: On the topological product of paracompact spaces.-.Bull. Acad. Pol. Sci. Math. 8 (1960), 747–750 [Frolika]. MR 0125559
Reference: [7] Frolík, Z.:: Generalizations of $\text{G}_{\delta }$-property of complete metric spaces.-.Czechoslovak Math. J. 10 (85) (1960), 359–379 [Frolikb]. MR 0116305
Reference: [8] Frolík, Z.:: Locally $\text{G}_{\delta }$-spaces.-.Czechoslovak Math. J. 12 (87) (1962), 346–354 [Frolikc]. MR 0148028
Reference: [9] Frolík, Z.:: A note on metric-fine spaces.-.Proc. Amer. Math. Soc. 46:1 (1974), 111–119 [Frolikd]. MR 0358704, 10.2307/2040492
Reference: [10] Ginsburg, S. and J. R. Isbell:: Some operators on uniform spaces.-.Trans. Amer. Math. Soc. 93 (1959), 145–168 [Ginsburga]. MR 0112119, 10.1090/S0002-9947-1959-0112119-4
Reference: [11] Hager, A. W.:: Some nearly fine uniform spaces.-.Proc. London Math. Soc. (3), 28 (1974), 517–546 [Hagera]. Zbl 0284.54017, MR 0397670
Reference: [12] Hausdorff, F.:: Erweiterung einer Homöomorphie.-.Fund. Math. 16 (1930), 353–360 [Hausdorffa]. 10.4064/fm-16-1-353-360
Reference: [13] Hohti, A.:: On uniform paracompactness.-.Ann. Acad. Scient. Fenn., Series A, I. Mathematica, Dissertationes 36 (1981 [Hohtia]). Zbl 0502.54021, MR 0625526
Reference: [14] Hohti, A.:: On supercomplete uniform spaces.-.Proc. Amer. Math. Soc. 87 (1983), 557–560 [Hohtib]. Zbl 0538.54015, MR 0684658, 10.1090/S0002-9939-1983-0684658-8
Reference: [15] Hohti, A.:: On Ginsburg-Isbell derivatives and ranks of metric spaces.-.Pacific J. Math. 111 (1) (1984), 39–48 [Hohtic]. Zbl 0558.54020, MR 0732057, 10.2140/pjm.1984.111.39
Reference: [16] Hohti, A.:: On supercomplete uniform spaces II.-.Czechoslovak Math. J. 37 (1987), 376–385 [Hohtid]. Zbl 0654.54020, MR 0904765
Reference: [17] Hohti, A.:: On supercomplete uniform spaces III.-.Proc. Amer. Math. Soc. 97:2, 339–342 [Hohtie]. MR 0835894, 10.1090/S0002-9939-1986-0835894-1
Reference: [18] Hohti, A., and Jan Pelant:: On complexity of metric spaces.-.Fund. Math. CXXV (1985), 133–142 [HohtiPelanta]. MR 0813750, 10.4064/fm-125-2-133-142
Reference: [19] Hohti, A., and Jan Pelant:: On supercomplete uniform spaces IV: countable products.-.Fund. Math. 136:2 (1990), 115–120 [HohtiPelantb]. MR 1074656, 10.4064/fm-136-2-115-120
Reference: [20] Hušek, M., and J. Pelant:: Extensions and restrictions in products of metric spaces.-.Topology Appl. 25 (1987), 245–252 [Huseka]. MR 0889869, 10.1016/0166-8641(87)90081-2
Reference: [21] Isbell, J.:: Supercomplete spaces.-.Pacific J. Math. 12 (1962), 287–290 [Isbella]. Zbl 0104.39503, MR 0156311, 10.2140/pjm.1962.12.287
Reference: [22] Isbell, J.:: Uniform spaces.-.Math. Surveys, no. 12, Amer. Math. Soc., Providence, R. I., 1964 [Isbellb]. Zbl 0124.15601, MR 0170323
Reference: [23] Kirwan, F.:: An Introduction to Intersection Homology Theory.-.Pitman Research Notes in Mathematics Series 187, Longman, 1988 [Kirwana]. Zbl 0656.55002, MR 0981185
Reference: [24] Michael, E.:: The product of a normal space and a metric space need not be normal.-.Bull. Amer. Math. Soc. 69 (1963), 375–376 [Michaela]. Zbl 0114.38904, MR 0152985, 10.1090/S0002-9904-1963-10931-3
Reference: [25] Pasynkov, B. A.:: On the dimension of rectangular products.-.Sov. Math. Dokl. 16 (1975), 344–347 [Pasynkova]. Zbl 0334.54024, MR 0377833
Reference: [26] Pelant, J.:: Locally fine uniformities and normal covers.-.Czechoslovak Math. J. 37 (112) (1987), 181–187 [Pelanta]. Zbl 0656.54020, MR 0882592
Reference: [27] Rice, M.D.:: A note on uniform paracompactness.-.Proc. Amer. Math. Soc. 62:2 (1977), 359–362 [Ricea]. Zbl 0353.54011, MR 0436085, 10.1090/S0002-9939-1977-0436085-3
Reference: [28] Rudin, M. E., and S. Watson:: Countable products of scattered paracompact spaces.-.Proc. Amer. Math. Soc. 89:3 (1983), 551–552 [Rudina]. MR 0715885, 10.1090/S0002-9939-1983-0715885-9
Reference: [29] Stone, A. H.:: Kernel constructions and Borel sets.-.Trans. Amer. Math. Soc. 107 (1963), 58–70 [Stonea]. Zbl 0114.38604, MR 0151935, 10.1090/S0002-9947-1963-0151935-0
Reference: [30] Telgársky, R.:: C-scattered and paracompact spaces.-.Fund. Math. 73 (1971), 59–74 [Telgarskya]. MR 0295293, 10.4064/fm-73-1-59-74
Reference: [31] Telgársky, R.:: Spaces defined by topological games.-.Fund. Math. LXXXVIII:3 (1975), 193–223 [Telgarskyb].
.

Files

Files Size Format View
CzechMathJ_49-1999-3_10.pdf 412.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo