Previous |  Up |  Next

Article

Title: U-ideals of factorable operators (English)
Author: John, Kamil
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 3
Year: 1999
Pages: 607-616
Summary lang: English
.
Category: math
.
Summary: We suggest a method of renorming of spaces of operators which are suitably approximable by sequences of operators from a given class. Further we generalize J. Johnsons’s construction of ideals of compact operators in the space of bounded operators and observe e.g. that under our renormings compact operators are $u$-ideals in the: space of 2-absolutely summing operators or in the space of operators factorable through a Hilbert space. (English)
Keyword: factorization of linear operators
Keyword: u-ideal
Keyword: approximation properties
Keyword: unconditional basis
MSC: 46A32
MSC: 46B20
MSC: 46B25
MSC: 46B28
MSC: 46B99
MSC: 46H10
MSC: 47L20
idZBL: Zbl 1008.46002
idMR: MR1708346
.
Date available: 2009-09-24T10:25:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127513
.
Reference: [E,J] G. Emmanuele, K. John: Some remarks on the position of the space ${\mathcal K}(X,Y)$ inside the space ${\mathcal W}(X,Y)$.New Zealand J. Math. 26(2) (1997), 183–189. MR 1601639
Reference: [F] J. H. Fourie: Projections on operator duals.Quaestiones Math. 21 (1998), 11–18. Zbl 0938.47020, MR 1658463, 10.1080/16073606.1998.9632022
Reference: [G,K,S] G. Godefroy, N. J. Kalton, P. D. Saphar: Unconditional ideals in Banach spaces.Studia Math. 104 (1) (1993), 13–59. MR 1208038
Reference: [H,W,W] P. Harmand, D. Werner, W. Werner: M-ideals in Banach Spaces and Banach Algebras.Lecture Notes in Math., 1547, Springer, Berlin, 1993. MR 1238713
Reference: [J1] K. John: On the space ${\mathcal K}(P,P^\ast )$ of compact operators on Pisier space P.Note di Matematica 12 (1992), 69–75. MR 1258564
Reference: [J2] K. John: On a result of J. Johnson.Czechoslovak Math. Journal 45 (1995), 235–240. Zbl 0869.46011, MR 1331461
Reference: [Jo] J. Johnson: Remarks on Banach spaces of compact operators.J. Funct. Analysis 32 (1979), 304–311. Zbl 0412.47024, MR 0538857, 10.1016/0022-1236(79)90042-9
Reference: [Ka] N. J. Kalton: Spaces of compact operators.Math. Annalen 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [Li] Å. Lima: Property $(wM^*)$ and the unconditional metric approximation property.Studia Math. 113 (3) (1995), 249–263. Zbl 0826.46013, MR 1330210, 10.4064/sm-113-3-249-263
Reference: [LT,I] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces.EMG 92 Springer Verlag (1977). MR 0500056
Reference: [LT,II] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces.EMG 97 Springer Verlag (1979). MR 0540367
Reference: [Pie] A. Pietsch: Operator ideals.Berlin, Deutscher Verlag der Wissenschaften, 1978. Zbl 0405.47027, MR 0519680
Reference: [Pi] J. Pisier: Counterexamples to a conjecture of Grothendieck.Acta Mat. 151 (1983), 180–208. Zbl 0542.46038, MR 0723009
Reference: [Ru] W. Ruess: Duality and Geometry of spaces of compact operators.Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984, pp. 59–78. Zbl 0573.46007, MR 0761373
.

Files

Files Size Format View
CzechMathJ_49-1999-3_12.pdf 359.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo