| Title:
|
A theorem for an axiomatic approach to metric properties of graphs (English) |
| Author:
|
Nebeský, Ladislav |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
50 |
| Issue:
|
1 |
| Year:
|
2000 |
| Pages:
|
121-133 |
| . |
| Category:
|
math |
| . |
| MSC:
|
05C12 |
| MSC:
|
05C38 |
| MSC:
|
05C99 |
| idZBL:
|
Zbl 1033.05033 |
| idMR:
|
MR1745467 |
| . |
| Date available:
|
2009-09-24T10:31:00Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127556 |
| . |
| Reference:
|
[1] H.-J. Bandelt, M. van de Vel and E. Verheul: Modular interval spaces.Math. Nachr. 163 (1993), 177–201. MR 1235066, 10.1002/mana.19931630117 |
| Reference:
|
[2] G. Chartrand and L. Lesniak: Graphs & Digraphs.Third edition. Chapman & Hall, London, 1996. MR 1408678 |
| Reference:
|
[3] H. M. Mulder: The Interval Function of a Graph.Mathematisch Centrum, Amsterdam, 1980. Zbl 0446.05039, MR 0605838 |
| Reference:
|
[4] L. Nebeský: A characterization of the set of all shortest paths in a connected graph.Math. Bohem. 119 (1994), 15–20. MR 1303548 |
| Reference:
|
[5] L. Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math. J. 44 (119) (1994), 173–178. MR 1257943 |
| Reference:
|
[6] L. Nebeský: Geodesics and steps in a connected graph.Czechoslovak Math. J. 47 (122) (1997), 149–161. MR 1435613, 10.1023/A:1022404624515 |
| Reference:
|
[7] L. Nebeský: An axiomatic approach to metric properties of connected graphs.Czechoslovak Math. J. 50(125) (2000), 3–14. MR 1745453, 10.1023/A:1022472700080 |
| Reference:
|
[8] L. Nebeský: A new proof of a characterization of the set of all geodesics in a connected graph.Czechoslovak Math. J. 48(123) (1998), 809–813. MR 1658202, 10.1023/A:1022404126392 |
| . |