Previous |  Up |  Next

Article

Title: Examples of bifurcation of periodic solutions to variational inequalities in $\mathbb R^\kappa $ (English)
Author: Kučera, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 2
Year: 2000
Pages: 225-244
Summary lang: English
.
Category: math
.
Summary: A bifurcation problem for variational inequalities \[ U(t) \in K, (\dot{U}(t)-B_\lambda U(t) - G(\lambda ,U(t)),\ Z - U(t))\ge 0\ \text{for} \text{all} \ Z\in K, \text{a.a.} \ t \ge 0 \] is studied, where $K$ is a closed convex cone in $\mathbb{R}^\kappa $, $\kappa \ge 3$, $B_\lambda $ is a $\kappa \times \kappa $ matrix, $G$ is a small perturbation, $\lambda $ a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case. (English)
Keyword: bifurcation
Keyword: periodic solutions
Keyword: variational inequality
Keyword: differential inequality
Keyword: finite dimensional space
MSC: 34A25
MSC: 34A40
MSC: 34C23
MSC: 37G15
MSC: 47J20
MSC: 49J40
idZBL: Zbl 1047.37034
idMR: MR1761383
.
Date available: 2009-09-24T10:32:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127565
.
Reference: [1] J. C. Alexander, J. A. Yorke: Global bifurcation of periodic orbits.Amer. J. Math. 100 (1978), no. 2, 263–292. MR 0474406, 10.2307/2373851
Reference: [2] J. P. Aubin, A. Cellina: Differential Inclusions.Springer Verlag, Berlin, 1984. MR 0755330
Reference: [3] M. Bosák, M. Kučera: A bifurcation of periodic solutions to differential inequalities in $\mathbb{R}^3$.Czechoslovak Math. J. 42 (117) (1992), no. 2, 339–363. MR 1179505
Reference: [4] Sh.-N. Chow, J. Mallet-Paret: The Fuller index and global Hopf bifurcation.J. Differential Equations 29 (1978), no. 1, 66–85. MR 0492560, 10.1016/0022-0396(78)90041-4
Reference: [5] J. Eisner, M. Kučera: Hopf bifurcation and ordinary differential inequalities.Czechoslovak Math. J. 45 (120) (1995), no. 4, 577–608. MR 1354920
Reference: [6] M. Kučera: Bifurcation of periodic solutions to ordinary differential inequalities.Colloq. Math. Soc. János Bolyai. Differential Equations. 62 (1991), 227–255. MR 1468758
Reference: [7] M. Kučera: Bifurcation of periodic solutions to variational inequalities in $\mathbb{R}^\kappa $ based on Alexander-Yorke theorem.Czechoslovak Math. J. 49 (124) (1999), no. 3, 449–474. MR 1707987, 10.1023/A:1022457532422
Reference: [8] M. Kučera: Stability of bifurcating periodic solutions of differential inequalities in $\mathbb{R}^3$.Math. Nachr 197 (1999), 61–88. MR 1666194, 10.1002/mana.19991970106
Reference: [9] J. E. Marsden, M. Mc Cracken: The Hopf Bifurcation Theorem and Applications.Springer, Berlin, 1976. MR 0494309
Reference: [10] P. H. Rabinowitz: Some global results for non-linear eigenvalue problems.J. Funct. Anal. 7 (1971), 487–513. MR 0301587, 10.1016/0022-1236(71)90030-9
Reference: [11] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory.Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971. Zbl 0281.47043
.

Files

Files Size Format View
CzechMathJ_50-2000-2_1.pdf 453.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo