Title:
|
On uniform distribution of sequences $(a_n x)_1^\infty$ (English) |
Author:
|
Šalát, Tibor |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2000 |
Pages:
|
331-340 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Keyword:
|
uniform distribution |
Keyword:
|
Baire category |
Keyword:
|
Lebesgue measure |
Keyword:
|
dyadic number of set |
Keyword:
|
continued fraction |
MSC:
|
11B57 |
MSC:
|
11K06 |
MSC:
|
11K55 |
idZBL:
|
Zbl 1053.11064 |
idMR:
|
MR1761390 |
. |
Date available:
|
2009-09-24T10:33:03Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127572 |
. |
Reference:
|
[1] D. Carlson: Good sequences of integers.J. Number Theory 7 (1975), 91–104. Zbl 0293.10017, MR 0357342, 10.1016/0022-314X(75)90010-4 |
Reference:
|
[2] H. Davenport, P. Erdös, W. J. Le Veque: On Weyl’s criterion for uniform distribution.Michigan Math. J. 10 (1963), 311–314. MR 0153656, 10.1307/mmj/1028998917 |
Reference:
|
[3] A. Khintchine: Continued Fractions.Gos. Izd. Mat. Lit., Moscow, 1961. (russian) |
Reference:
|
[4] L. Kuipers, H. Niederreiter: Uniform Distribution of Sequences.John Wiley, New York-London-Sydney-Toronto, 1974. MR 0419394 |
Reference:
|
[5] H. H. Ostmann: Additive Zahlentheorie I..Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. Zbl 0072.03101, MR 0098721 |
Reference:
|
[6] G. M. Petersen, M. T. Mc. Gregor: On the structure of well distributed sequences (II.).Indag. Math. XVI (1964), 477–487. MR 0170877, 10.1016/S1385-7258(64)50052-9 |
Reference:
|
[7] T. Šalát: Eine metrische Eigenschaft der Cantorschen Entwicklungen der reellen Zahlen und Irrationalitätskriterien.Czechoslovak Math. J. 14 (89) (1964), 254–266. MR 0168527 |
Reference:
|
[8] R. Sikorski: Real Functions I. (Polish).PWN, Warszawa, 1958. MR 0091312 |
Reference:
|
[9] A. Simmons: An “Archimedean” paradox.Amer. Math. Monthly 89 (1982), 114–115. MR 0643278, 10.2307/2320930 |
Reference:
|
[10] C. Visser: The law of nought-or-one.Studia Math. 7 (1938), 143–159. Zbl 0019.22501, 10.4064/sm-7-1-143-149 |
. |