Previous |  Up |  Next

Article

Title: Eigenvalue distribution of certain ray patterns (English)
Author: Eschenbach, Carolyn A.
Author: Hall, Frank J.
Author: Li, Zhongshan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 4
Year: 2000
Pages: 749-762
Summary lang: English
.
Category: math
.
Summary: In this paper, the eigenvalue distribution of complex matrices with certain ray patterns is investigated. Cyclically real ray patterns and ray patterns that are signature similar to real sign patterns are characterized, and their eigenvalue distribution is discussed. Among other results, the following classes of ray patterns are characterized: ray patterns that require eigenvalues along a fixed line in the complex plane, ray patterns that require eigenvalues symmetric about a fixed line, and ray patterns that require eigenvalues to be in a half-plane. Finally, some generalizations and open questions related to eigenvalue distribution are mentioned. (English)
Keyword: eigenvalue distribution
Keyword: ray patterns
Keyword: sign patterns
Keyword: sector patterns
Keyword: cyclically real
Keyword: signature similarity
Keyword: cycles
MSC: 15A18
MSC: 15A57
idZBL: Zbl 1079.15504
idMR: MR1792968
.
Date available: 2009-09-24T10:37:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127608
.
Reference: [1] C. A. Eschenbach: Sign patterns that require exactly one real eigenvalue.Linear and Multilinear Algebra 35 (1993), 213–224. Zbl 0787.15008, MR 1308691, 10.1080/03081089308818259
Reference: [2] C. A. Eschenbach, F. J. Hall and Z. Li: Eigenvalue frequency and consistent sign pattern matrices.Czechoslovak Math. J. 44(119) (1994), 461–479. MR 1288165
Reference: [3] C. A. Eschenbach, F.  J. Hall and Z. Li: From real to complex sign pattern matrices.Bull. Austral. Math. Soc. 57 (1998), 159–172. MR 1623848, 10.1017/S0004972700031518
Reference: [4] C. A. Eschenbach and C. R. Johnson: Sign patterns that require real, nonreal or pure imaginary eigenvalues.Linear and Multilinear Algebra 29 (1991), 299–311. MR 1119461, 10.1080/03081089108818079
Reference: [5] C. A. Eschenbach and C. R. Johnson: Sign patterns that require repeated eigenvalues.Linear Algebra Appl. 190 (1993), 169–179. MR 1230357
Reference: [6] R. Feynman, R. Leighton and M. Sands: The Feynman Lectures on Physics, vol. III.Addison-Wesley, 1965. MR 0213079
Reference: [7] Z. Li, F. J. Hall and C. A. Eschenbach: On the period and base of a sign pattern matrix.Linear Algebra Appl. 212/213 (1994), 101–120. MR 1306974
Reference: [8] J. McDonald, D. Olesky, M. Tsatsomeros and P. van den Driessche: Ray patterns of matrices and nonsingularity.Linear Algebra Appl. 267 (1997), 359–373. MR 1479127
Reference: [9] J. Rohn and G. Rex: Interval P-matrices.SIAM J. Matrix Anal. Appl. 17 (1996), 1020–1024. MR 1410715, 10.1137/0617062
.

Files

Files Size Format View
CzechMathJ_50-2000-4_6.pdf 373.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo