Article
Summary:
Given a Young function $\Phi $, we study the existence of copies of $c_0$ and $\ell _{\infty }$ in $\mathop {\mathrm cabv}\nolimits _{\Phi } (\mu ,X)$ and in $\mathop {\mathrm cabsv}\nolimits _{\Phi } (\mu ,X)$, the countably additive, $\mu $-continuous, and $X$-valued measure spaces of bounded $\Phi $-variation and bounded $\Phi $-semivariation, respectively.
References:
[2] L. Drewnowski and G. Emmanuelle:
The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_0$. Studia Math. 104 (1993), 110–123.
MR 1211812
[3] G. Emmanuelle: On complemented copies of $c_0$ in $L_{X}^{p}$, $1 \le p < \infty $. Proc. Amer. Math. Soc. 104, 785–786.
[5] J. Mendoza:
Copies of $\ell _{\infty }$ in $L^{p} (\mu ;X)$. Proc. Amer. Math. Soc. 109 (1990), 125–127.
MR 1012935
[6] M. M. Rao and Z. D. Ren:
Theory of Orlicz Spaces. Marcel Dekker Inc., 1991.
MR 1113700
[7] H. P. Rosenthal:
On relatively disjoint families of measures with some applications to Banach spaces theory. Studia Math. 37 (1970), 13–16.
DOI 10.4064/sm-37-1-13-36 |
MR 0270122
[8] J. J. Uhl Jr.:
Orlicz spaces of finitely additive set functions. Studia Math. XXIX (1967), 19–58.
MR 0226395 |
Zbl 0158.13703