Article
Keywords:
ergodic transformation; strongly mixing; Birkhoff ergodic theorem; Komlós theorem
Summary:
We call a sequence $(T_n)$ of measure preserving transformations strongly mixing if $P(T_n^{-1}A\cap B)$ tends to $P(A)P(B)$ for arbitrary measurable $A$, $B$. We investigate whether one can pass to a suitable subsequence $(T_{n_k})$ such that $\frac{1}{K} \sum _{k=1}^K f(T_{n_k}) \longrightarrow \int f \mathrm{d}P$ almost surely for all (or “many”) integrable $f$.
References:
[4] J. M. Rosenblatt and M. Wierdl:
Pointwise ergodic theorems via harmonic analysis. Ergodic theory and its connections with harmonic analysis, K. M. Petersen and I. A. Salama (eds.), London Math. Soc. Lecture Note Series 205, Cambridge Univ. Press, 1995.
MR 1325697
[5] F. Schweiger:
Ergodic theory of fibred systems and metric number theory. Oxford Science Publications, 1995.
MR 1419320 |
Zbl 0819.11027