Article
Keywords:
strict topologies; locally convex algebras; locally $m$-convex algebras
Summary:
Let $X$ be a completely regular Hausdorff space, $C_{b}(X)$ the space of all scalar-valued bounded continuous functions on $X$ with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally $m$-convex.
References:
[3] L. Gillman and M. Jerrison:
Rings of Continuous Functions. D. Van Nostrand, 1960.
MR 0116199
[6] S. S. Khurana and S. A. Othman:
Grothendieck measures. J. London Math. Soc. 39 (1989), 481–486.
MR 1002460
[7] G. Koumoullis:
Perfect, $u$-additive measures and strict topologies. Illinois J. Math. (1982).
MR 0658457 |
Zbl 0471.28003
[8] E. A. Michael:
Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., No. 11 (1952).
MR 0051444 |
Zbl 0047.35502
[9] V. Pták:
Weak compactness in convex topological spaces. Czechoslovak Math. J. 4 (1954), 175–186.
MR 0066550
[10] H. H. Schaeffer: Topological Vector Spaces. Springer-Verlag, 1986.
[12] C. Sunyach:
Une caracterisation des espaces universellement Radon measurables. C. R. Acad. Sci. Paris 268 (1969), 864–866.
MR 0248321
[13] R. F. Wheeler:
Survey of Baire measures and strict topologies. Exposition. Math. 2 (1983), 97–190.
MR 0710569 |
Zbl 0522.28009
[14] V. S. Varadarajan:
Measures on topological spaces. Amer. Math. Soc. Transl. 48 (1965), 161–220.
DOI 10.1090/trans2/048/10