Previous |  Up |  Next

Article

Title: Multi-faithful spanning trees of infinite graphs (English)
Author: Polat, Norbert
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 477-492
Summary lang: English
.
Category: math
.
Summary: For an end $\tau $ and a tree $T$ of a graph $G$ we denote respectively by $m(\tau )$ and $m_{T}(\tau )$ the maximum numbers of pairwise disjoint rays of $G$ and $T$ belonging to $\tau $, and we define $\mathop {\mathrm tm}(\tau ) := \min \lbrace m_{T}(\tau )\: T \text{is} \text{a} \text{spanning} \text{tree} \text{of} G \rbrace $. In this paper we give partial answers—affirmative and negative ones—to the general problem of determining if, for a function $f$ mapping every end $\tau $ of $G$ to a cardinal $f(\tau )$ such that $\mathop {\mathrm tm}(\tau ) \le f(\tau ) \le m(\tau )$, there exists a spanning tree $T$ of $G$ such that $m_{T}(\tau ) = f(\tau )$ for every end $\tau $ of $G$. (English)
Keyword: infinite graph
Keyword: end
Keyword: end-faithful
Keyword: spanning tree
Keyword: multiplicity
MSC: 05C05
MSC: 05C99
idZBL: Zbl 1079.05516
idMR: MR1851542
.
Date available: 2009-09-24T10:44:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127664
.
Reference: [1] N.  Bourbaki: Topologie Générale. Chapitre 9.Hermann, Paris, 1958. MR 0173226
Reference: [2] H.  Freudenthal: Über die Enden diskreter Räume und Gruppen.Comment. Math. Helv. 17 (1944), 1–38. MR 0012214, 10.1007/BF02566233
Reference: [3] G.  Hahn and J.  Širáň: Three remarks on end-faithfulness.Finite and Infinite Combinatorics in Sets and Logic, N.  Sauer et al. (eds.), Kluwer, Dordrecht, 1993, pp. 125–133. MR 1261200
Reference: [4] R.  Halin: Über unendliche Wege in Graphen.Math. Ann. 157 (1964), 125–137. Zbl 0125.11701, MR 0170340, 10.1007/BF01362670
Reference: [5] R.  Halin: Über die Maximalzahl fremder unendlicher Wege in Graphen.Math. Nachr. 30 (1965), 63–85. Zbl 0131.20904, MR 0190031, 10.1002/mana.19650300106
Reference: [6] R.  Halin: Die Maximalzahl fremder zweiseitig unendliche Wege in Graphen.Math. Nachr. 44 (1970), 119–127. MR 0270953, 10.1002/mana.19700440109
Reference: [7] H.  Hopf: Enden offener Raüme und unendliche diskontinuierliche Gruppen.Comment. Math. Helv. 15 (1943), 27–32. MR 0007646
Reference: [8] H. A.  Jung: Connectivity in Infinite Graphs.Studies in Pure Mathematics, L. Mirsky (ed.), Academic Press, New York-London, 1971, pp. 137–143. Zbl 0217.02603, MR 0278982
Reference: [9] F.  Laviolette and N.  Polat: Spanning trees of countable graphs omitting sets of dominated ends.Discrete Math. 194 (1999), 151–172. MR 1657074
Reference: [10] N.  Polat: Développements terminaux des graphes infinis. I. Arbres maximaux coterminaux.Math. Nachr. 107 (1982), 283–314. Zbl 0536.05043, MR 0695755, 10.1002/mana.19821070124
Reference: [11] N.  Polat: Développements terminaux des graphes infinis. III.  Arbres maximaux sans rayon, cardinalité maximum des ensembles disjoints de rayons.Math. Nachr. 115 (1984), 337–352. Zbl 0536.05045, MR 0755288, 10.1002/mana.19841150126
Reference: [12] N.  Polat: Spanning trees of infinite graphs.Czechoslovak Math. J. 41 (1991), 52–60. Zbl 0793.05054, MR 1087622
Reference: [13] N.  Polat: Ends and multi-endings. I.J.  Combin. Theory Ser. B 67 (1996), 86–110. Zbl 0855.05051, MR 1385385, 10.1006/jctb.1996.0035
Reference: [14] N.  Polat: Ends and multi-endings.  II.J.  Combin. Theory Ser. B 68 (1996), 56–86. Zbl 0855.05052, MR 1405706, 10.1006/jctb.1996.0057
Reference: [15] P.  Seymour and R.  Thomas: An end-faithful spanning tree counterexample.Discrete Math. 95 (1991). MR 1045600, 10.1016/0012-365X(91)90344-2
Reference: [16] J.  Širáň: End-faithful forests and spanning trees in infinite graphs.Discrete Math. 95 (1991), 331–340. MR 1141946, 10.1016/0012-365X(91)90345-3
Reference: [17] C.  Thomassen: Infinite connected graphs with no end-preserving spanning trees.J.  Combin. Theory Ser. B 54 (1992), 322–324. Zbl 0753.05030, MR 1152455, 10.1016/0095-8956(92)90059-7
Reference: [18] B.  Zelinka: Spanning trees of locally finite graphs.Czechoslovak Math. J. 39 (1989), 193–197. Zbl 0679.05023, MR 0992126
.

Files

Files Size Format View
CzechMathJ_51-2001-3_4.pdf 435.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo