Previous |  Up |  Next

Article

Title: A canonical directly infinite ring (English)
Author: Petrich, Mario
Author: Silva, Pedro V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 3
Year: 2001
Pages: 545-560
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb N$ be the set of nonnegative integers and $\mathbb Z$ the ring of integers. Let $\mathcal B$ be the ring of $N \times N$ matrices over $\mathbb Z$ generated by the following two matrices: one obtained from the identity matrix by shifting the ones one position to the right and the other one position down. This ring plays an important role in the study of directly finite rings. Calculation of invertible and idempotent elements of $\mathcal B$ yields that the subrings generated by them coincide. This subring is the sum of the ideal $\mathcal F$ consisting of all matrices in $\mathcal B$ with only a finite number of nonzero entries and the subring of $\mathcal B$ generated by the identity matrix. Regular elements are also described. We characterize all ideals of $\mathcal B$, show that all ideals are finitely generated and that not all ideals of $\mathcal B$ are principal. Some general ring theoretic properties of $\mathcal B$ are also established. (English)
Keyword: directly finite rings
Keyword: matrix rings
MSC: 15A36
MSC: 16D60
MSC: 16P70
MSC: 16S50
MSC: 16U60
idZBL: Zbl 1079.15508
idMR: MR1851546
.
Date available: 2009-09-24T10:45:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127668
.
Reference: [1] K.  R.  Goodearl: Von Neumann Regular Rings.Pitman, London, 1979. Zbl 0411.16007, MR 0533669
Reference: [2] N.  Jacobson: Lectures in Abstract Algebra II. Linear algebra.Springer, New York-Heidelberg-Berlin, 1975. Zbl 0314.15001, MR 0392906
Reference: [3] S.  Lang: Algebra.Addison-Wesley, Reading, 1993. Zbl 0848.13001, MR 0197234
Reference: [4] M.  Petrich, P.  V.  Silva: On directly infinite rings.Acta Math. Hungar. 85 (1999), 153–165. MR 1713097, 10.1023/A:1006633231817
Reference: [5] M.  Petrich, P.  V.  Silva: On presentations of semigroup rings.Boll. Un. Mat. Ital. B 8 (1999), 127–142. MR 1794554
Reference: [6] L.  H.  Rowen: Ring Theory, Vol. I.Academic Press, San Diego, 1988. MR 0940245
.

Files

Files Size Format View
CzechMathJ_51-2001-3_8.pdf 385.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo