[2] V. A.  Botvinnik: Phragmén-Lindelöf’s theorems for space mappings with boundary distortion. Dissertation, Volgograd (1983), 1–96.
[3] Yu. D.  Burago and V. A.  Zalgaller: 
Geometric Inequalities. Nauka, Moscow, 1980. 
MR 0602952[4] C. Croke: 
Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) Ser. 13 (1980), 419–435. 
MR 0608287 | 
Zbl 0465.53032[5] H.  Federer: 
Geometric Measure Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1969. 
MR 0257325 | 
Zbl 0176.00801[8] J.  Heinonen, T.  Kilpeläinen and O.  Martio: 
Nonlinear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, 1993. 
MR 1207810[9] D.  Hoffman and J.  Spruck: 
Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715–727. 
DOI 10.1002/cpa.3160270601 | 
MR 0365424[10] I. Holopainen and S. Rickman: 
Classification of Riemannian manifolds in nonlinear potential theory. Potential Analysis 2 (1993), 37–66. 
DOI 10.1007/BF01047672 | 
MR 1245236[11] A. S.  Kronrod: 
On functions of two variables. Uspekhi Mat. Nauk 5 (1950), 24–134. (Russian) 
MR 0034826[12] O.  Martio, V.  Miklyukov and M.  Vuorinen: 
Differential forms and quasiregular mappings on Riemannian manifolds. XVIth Rolf Nevanlinna Colloquium (I. Laine and O. Martio, eds.), Walter de Gruyter &Co, 1996, pp. 151–159. 
MR 1427080[13] O.  Martio, V.  Miklyukov and M.  Vuorinen: 
Phragmén – Lindelöf’s principle for quasiregular mappings and isoperimetry. Dokl. Akad. Nauk 347 (1996), 303–305. (Russian) 
MR 1393057[14] V. M.  Miklyukov: 
Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Mat. Sb. 11 (1980), 42–66. (Russian) 
MR 0560463[15] P.  Pansu: 
Quasiconformal mappings and manifolds of negative curvature. Curvature and Topology of Riemannian Manifolds. Proceed. 17th Int. Taniguchi Symp., Katata, Japan, Aug. 26-31, 1985. 
MR 0859587 | 
Zbl 0592.53031[16] E.  Phragmén and E.  Lindelöf: 
Sur une extension d’un principe classique de l’analyse et sur quelques propriétés des fonctions monogenènes dans le voisinage d’un point singulier. Acta Math. 31 (1908), 381–406. 
DOI 10.1007/BF02415450 | 
MR 1555044[18] M.  Vuorinen: 
Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319, Springer-Verlag. 
MR 0950174 | 
Zbl 0646.30025