Previous |  Up |  Next

Article

Title: Complete distributivity of lattice ordered groups and of vector lattices (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 889-896
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the possibility of a regular embedding of a lattice ordered group into a completely distributive vector lattice. (English)
Keyword: lattice ordered group
Keyword: vector lattice
Keyword: complete distributivity
Keyword: regular embedding
MSC: 06F15
MSC: 06F20
idZBL: Zbl 0998.06013
idMR: MR1864049
.
Date available: 2009-09-24T10:48:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127693
.
Reference: [1] S. J.  Bernau: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings.Proc. London Math. Soc. 15 (1965), 599–631. MR 0182661
Reference: [2] G.  Birkhoff: Lattice Theory. Revised Edition.American Mathematical Society, Providence, 1948. MR 0029876
Reference: [3] P.  Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [4] P.  Conrad and D.  McAlister: The completion of a lattice ordered group.J.  Austral. Math. Soc. 9 (1969), 182–208. MR 0249340, 10.1017/S1446788700005760
Reference: [5] J.  Jakubík: Representation and extension of $\ell $-groups.Czechoslovak Math.  J. 13 (1963), 267–283. (Russian) MR 0171865
Reference: [6] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen.Časopis pěst. matem. 84 (1959), 53–63. MR 0104740
Reference: [7] J. Jakubík: Die Dedekindschen Schnitte im direkten Product von halbgeordneten Gruppen.Mat. fyz. časopis Slovenskej akad. vied 16 (1966), 329–336. MR 0210638
Reference: [8] J.  Jakubík: Distributivity in lattice ordered groups.Czechoslovak Math.  J. 22 (1972), 108–125. MR 0325487
Reference: [9] L. V.  Kantorovich, B. Z.  Vulikh and A. G.  Pinsker: Functional Analysis in Semiordered Spaces.Moskva, 1950. (Russian)
Reference: [10] M. A.  Lapellere and A.  Valente: Embedding of Archimedean $\ell $-groups in Riesz spaces.Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 249–254. MR 1628633
Reference: [11] W. A. J.  Luxemburg and A. C.  Zaanen: Riesz Spaces, Vol. 1.North-Holland Publishing Company, Amsterdam, 1971. MR 0511676
Reference: [12] F.  Maeda and T.  Ogasavara: Representation of vector lattices.J.  Hiroshima Univ., Ser. A 12 (1942), 17–35. MR 0029087, 10.32917/hmj/1558306491
Reference: [13] R. S.  Pierce: Distributivity in Boolean algebras.Pacific. J.  Math. 7 (1957), 983–992. Zbl 0086.02803, MR 0089180, 10.2140/pjm.1957.7.983
Reference: [14] A. G.  Pinsker: Extensions of semiordered groups and spaces.Uch. Zap. Leningrad. Gos. Ped. Inst. 86 (1949), 285–315. (Russian)
Reference: [15] R. H.  Redfield: Archimedean and basic elements in completely distributive lattice-ordered groups.Pacific. J.  Math. 63 (1976), 247–253. Zbl 0324.06007, MR 0412074, 10.2140/pjm.1976.63.247
Reference: [16] R.  Sikorski: Boolean Algebras.Second Edition, Springer Verlag, Berlin, 1964. Zbl 0123.01303, MR 0177920
Reference: [17] E. C.  Smith jr. and A.  Tarski: Higher degrees of distributivity and completeness in Boolean algebras.Trans. Amer. Math. Soc. 84 (1957), 230–257. MR 0084466, 10.1090/S0002-9947-1957-0084466-4
Reference: [18] B. Z.  Vulikh: Introduction to the Theory of Semiordered Spaces.(In Russian; English translation: Introduction to the Theory of Partially Ordered Spaces, Groningen 1967), Moskva, 1961.
Reference: [19] K.  Yosida: On the representation of the vector lattice.Proc. Acad. Tokyo 18 (1942), 339–342. Zbl 0063.09070, MR 0015378
.

Files

Files Size Format View
CzechMathJ_51-2001-4_16.pdf 311.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo