Title:
|
Commutativity of rings with polynomial constraints (English) |
Author:
|
Khan, Moharram A. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
401-413 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $p$, $ q$ and $r$ be fixed non-negative integers. In this note, it is shown that if $R$ is left (right) $s$-unital ring satisfying $[f(x^py^q) - x^ry, x] = 0$ ($[f(x^py^q) - yx^r, x] = 0$, respectively) where $f(\lambda ) \in {\lambda }^2{\mathbb Z}[\lambda ]$, then $R$ is commutative. Moreover, commutativity of $R$ is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results. (English) |
Keyword:
|
automorphism |
Keyword:
|
commutativity |
Keyword:
|
local ring |
Keyword:
|
polynomial identity |
Keyword:
|
$s$-unital ring |
MSC:
|
16R50 |
MSC:
|
16U70 |
MSC:
|
16U80 |
MSC:
|
16U99 |
idZBL:
|
Zbl 1014.16032 |
idMR:
|
MR1905447 |
. |
Date available:
|
2009-09-24T10:52:20Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127728 |
. |
Reference:
|
[1] H. A. S. Abujabal and M. A. Khan: Commutativity for a certain class of rings.Georgian Math. J. 5 (1998), 301–314. MR 1639061, 10.1023/A:1022197800695 |
Reference:
|
[2] H. A. S. Abujabal, M. A. Khan and M. S. Khan: A commutativity theorem for one sided $s$-unital rings.Pure Math. Appl. 1 (1990), 109–116. MR 1095008 |
Reference:
|
[3] H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings.Rad. Mat. 3 (1987), 255–260. MR 0931981 |
Reference:
|
[4] H. E. Bell: On the power map and ring commutativity.Canad. Math. Bull. 21 (1978), 399–404. Zbl 0403.16024, MR 0523579, 10.4153/CMB-1978-070-x |
Reference:
|
[5] H. E. Bell: On some commutativity theorems of Herstein.Arch. Math. 24 (1973), 34-38. Zbl 0251.16021, MR 0320090, 10.1007/BF01228168 |
Reference:
|
[6] I. N. Herstein: Power maps in rings.Michigan Math. J. 8 (1961), 29–32. Zbl 0096.25701, MR 0118741, 10.1307/mmj/1028998511 |
Reference:
|
[7] I. N. Herstein: Two remarks on commutativity of rings.Canad. J. Math. 7 (1955), 411–412. MR 0071405, 10.4153/CJM-1955-044-2 |
Reference:
|
[8] Y. Hirano, Y. Kobayashi and H. Tominaga: Some polynomial identities and commutativity of $s$-unital rings.Math. J. Okayama Univ. 24 (1982), 7–13. MR 0660049 |
Reference:
|
[9] N. Jacobson: Structure of Rings.Amer. Math. Soc. Colloq. Publ., Providence, 1956. Zbl 0073.02002, MR 0081264 |
Reference:
|
[10] T. P. Kezlan: A note on commutativity of semiprime PI-rings.Math. Japon. 27 (1982), 267–268. Zbl 0481.16013, MR 0655230 |
Reference:
|
[11] M. A. Khan: Commutativity of rings through a Streb’s result.Czecholoslovak Math. J. 50 (2000), 791–801. Zbl 1079.16504, MR 1792970, 10.1023/A:1022464612374 |
Reference:
|
[12] H. Komatsu, T. Nishinaka and H. Tominaga: On commutativity of rings.Rad. Mat. 6 (1990), 303–311. MR 1096712 |
Reference:
|
[13] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems.Math. J. Okayama Univ. 31 (1989), 101–120. MR 1043353 |
Reference:
|
[14] H. Komatsu: Some commutativity theorems for left $s$-unital rings.Resultate der Math. 15 (1989), 335–342. Zbl 0678.16027, MR 0997069, 10.1007/BF03322621 |
Reference:
|
[15] W. K. Nicholson and A. Yaqub: A commutativity theorem for rings and groups.Canad. Math. Bull. 22 (1979), 419–423. MR 0563755, 10.4153/CMB-1979-055-9 |
Reference:
|
[16] E. Psomopoulos: A commutativity theorem for rings.Math. Japon. 29 (1984), 371–373. Zbl 0548.16029, MR 0752233 |
Reference:
|
[17] M. S. Puctha and A. Yaqub: Rings satisfying polynomial constraints.J. Math. Soc. Japan 25 (1973), 115–124. MR 0313312 |
Reference:
|
[18] W. Streb: Zur Struktur nichtkommutativer Ringe.Math. J. Okayama Univ. 31 (1989), 135–140. Zbl 0702.16022, MR 1043356 |
Reference:
|
[19] W. Streb: Über einen Satz von Herstein und Nakayama.Rend. Sem. Mat. Univ. Podova 64 (1981), 151–171. Zbl 0474.16024, MR 0636633 |
. |