Article
Keywords:
semilocal; group ring
Summary:
Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of  $R$. $R$ is said to be semilocal if $R/J(R)$ is Artinian. In this paper we give necessary and sufficient conditions for the group ring  $RG$, where $G$  is an abelian group, to be semilocal.
References:
                        
[4] K.  Gulliksen, P.  Ribenboim and T. M.  Viswanathan: 
An elementary note on group rings. J.  Reine Angew. Math. 242 (1970), 148–162. 
MR 0274609[6] J.  Lawrence: 
Semilocal group rings and tensor products. Michigan Math.  J. 22 (1975), 309–313. 
MR 0393107[8] G.  Renault: 
Sur les anneaux de groupes. C.  R.  Acad. Sci. Paris Ser.  A 273 (1971), 84–87. 
MR 0288189 | 
Zbl 0275.16013[9] S. M. Woods: 
Some results on semi-perfect group rings. Canad. J.  Math. 28 (1974), 121–129. 
MR 0330212 | 
Zbl 0242.16007