Previous |  Up |  Next

Article

Title: Oscillation of forced nonlinear neutral delay difference equations of first order (English)
Author: Parhi, N.
Author: Tripathy, A. K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 83-101
Summary lang: English
.
Category: math
.
Summary: Necessary and sufficient conditions are obtained for every solution of \[ \Delta (y_{n}+p_{n}y_{n-m})\pm q_{n}G(y_{n-k})=f_{n} \] to oscillate or tend to zero as $n\rightarrow \infty $, where $p_{n}$, $q_{n}$ and $f_{n}$ are sequences of real numbers such that $q_{n}\ge 0$. Different ranges for $p_{n}$ are considered. (English)
Keyword: neutral difference equations
Keyword: oscillation
Keyword: nonoscillation
Keyword: asymptotic behaviour
MSC: 39A10
MSC: 39A11
MSC: 39A12
idZBL: Zbl 1016.39011
idMR: MR1962001
.
Date available: 2009-09-24T10:59:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127783
.
Reference: [1] S. S.  Cheng and Y. Z.  Lin: Complete characterization of an oscillatory neutral difference equation.J. Math. Anal. Appl. 221 (1998), 73–91. MR 1619135, 10.1006/jmaa.1997.5341
Reference: [2] D. A.  Georgiou, E. A.  Grove and G.  Ladas: Oscillations of neutral difference equations.Appl. Anal. 33 (1989), 243–251. MR 1030111, 10.1080/00036818908839876
Reference: [3] D. A.  Georgiou, E. A.  Grove and G.  Ladas: Oscillation of neutral difference equations with variable coefficient.In: Differencial Equations: Stability and Control, Marcel Dekker, 1990, pp. 165–178. MR 1096752
Reference: [4] I. Gyori and G. Ladas: Oscillation Theory of Delay Differential Equations with Applications.Clarendon Press, Oxford, 1991. MR 1168471
Reference: [5] B. S.  Lalli, B. G.  Zhang and J. Z.  Li: On the oscillation of solutions and existence of positive solutions of neutral difference equations.J.  Math. Anal. Appl. 158 (1991), 213–233. MR 1113411, 10.1016/0022-247X(91)90278-8
Reference: [6] B. S. Lalli and B. G. Zhang: On existence of positive solutions and bounded oscillations for neutral difference equations.J.  Math. Anal. Appl. 166 (1992), 272–287. MR 1159653, 10.1016/0022-247X(92)90342-B
Reference: [7] N. Parhi and A. K. Tripathy: Oscillation criteria for forced non-linear neutral delay difference equations of first order.Differential Equations Dynam. Systems 8 (2000), 81–97. MR 1858770
Reference: [8] N. Parhi and R. N. Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients.J.  Math. Anal. Appl. 256 (2001), 525–541. MR 1821755, 10.1006/jmaa.2000.7315
Reference: [9] E.  Thandapani et al: Asymptotic behaviour and oscillation of solutions of neutral delay-difference equations of arbitary order.Math. Slovaca 47 (1997), 539–551. MR 1635228
Reference: [10] B. G.  Zhang and S. S.  Cheng: Oscillation criteria and comparision theorems for delay-difference equations.Fasc. Math. 25 (1995), 13–32. MR 1339622
.

Files

Files Size Format View
CzechMathJ_53-2003-1_8.pdf 364.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo