Previous |  Up |  Next

Article

Title: A note on $g$-metrizable spaces (English)
Author: Li, Jinjin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 491-495
Summary lang: English
.
Category: math
.
Summary: In this paper, the relationships between metric spaces and $g$-metrizable spaces are established in terms of certain quotient mappings, which is an answer to Alexandroff’s problems. (English)
Keyword: metric spaces
Keyword: $g$-metrizable spaces
Keyword: 1-sequence-covering mappings
Keyword: $\sigma $-mappings
Keyword: quotient mappings
MSC: 54C10
MSC: 54D55
MSC: 54E35
MSC: 54E99
idZBL: Zbl 1026.54026
idMR: MR1983468
.
Date available: 2009-09-24T11:03:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127816
.
Reference: [1] P. Alexandroff: On some results concerning topological spaces and their continuous mappings.In: Proc. Symp. Gen. Top. (Prague, 1961), 1961, pp. 41–54. MR 0145472
Reference: [2] F. Siwiec: On defining a space by a weak base.Pacific J.  Math. 52 (1974), 233–245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233
Reference: [3] Shou Lin: On sequence-covering $s$-mappings.Adv. Math. (China) 25 (1996), 548–551. MR 1453163
Reference: [4] Shou Lin: $\sigma $-mappings and Alexandroff’s problems.(to appear).
Reference: [5] J. R. Boone and F. Siwiec: Sequentially quotient mappings.Czechoslovak Math.  J. 26 (1976), 174–182. MR 0402689
Reference: [6] R. Engelking: General Topology.Polish Scientific Publishers, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [7] A. V. Arhangel’skii: Mappings and spaces.Russian Math. Surveys 21 (1966), 115–162. MR 0227950
Reference: [8] Y. Tanaka: $\sigma $-hereditarily closure-preserving $k$-networks and $g$-metrizability.Proc. Amer. Math. Soc. 112 (1991), 283–290. Zbl 0770.54031, MR 1049850
.

Files

Files Size Format View
CzechMathJ_53-2003-2_22.pdf 288.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo