Previous |  Up |  Next

Article

Title: On a theorem of Holický and Zelený concerning Borel maps without $\sigma$-compact fibers (English)
Author: Milewski, P.
Author: Pol, R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 535-543
Summary lang: English
.
Category: math
.
Summary: The paper is concerned with a recent very interesting theorem obtained by Holický and Zelený. We provide an alternative proof avoiding games used by Holický and Zelený and give some generalizations to the case of set-valued mappings. (English)
Keyword: Borel maps
Keyword: $\sigma $-compact sections
Keyword: set-valued maps
MSC: 26A21
MSC: 28A05
MSC: 54C10
MSC: 54H05
idZBL: Zbl 1080.54511
idMR: MR2000051
.
Date available: 2009-09-24T11:04:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127821
.
Reference: [1] J. Chaber and R. Pol: Remarks on closed relations and a theorem of Hurewicz.Topology Proc. 22 (1997), 81–94. MR 1657906
Reference: [2] C. Dellacherie: Un cours sur les ensembles analytiques.In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 183–316.
Reference: [3] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [4] J. Hoffman-Jørgensen and F. Topsøe: Analytic spaces and their Application.In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 317–401.
Reference: [5] P. Holický and M. Zelený: A converse of Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections.Fund. Math. 165 (2000), 191–202. MR 1805424
Reference: [6] A. S. Kechris: Classical Descriptive Set Theory.Springer-Verlag, New York, 1994. MR 1321597
Reference: [7] A. S. Kechris, A. Louveau and W. H. Woodin: The structure of $\sigma $-ideals of compact sets.Trans. Amer. Math. Soc. 301 (1987), 263–288. MR 0879573
Reference: [8] K. Kuratowski: Topology  I and II.Academic Press, Warszawa, 1966 and 1968. MR 0217751
Reference: [9] H. Michalewski and R. Pol: On a Hurewicz-type theorem and a selection theorem of Michael.Bull. Polish Acad. Sci. Math. 43 (1995), 273–275. MR 1414783
Reference: [10] R. Pol: Some remarks about measurable parametrizations.Proc. Amer. Math. Soc. 93 (1985), 628–632. Zbl 0609.28006, MR 0776192, 10.1090/S0002-9939-1985-0776192-3
.

Files

Files Size Format View
CzechMathJ_53-2003-3_4.pdf 317.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo