[2] S. Burris and H. P. Sankappanavar:
A Course in Universal Algebra. Springer-Verlag, New York, 1981.
MR 0648287
[3] J. Czelakowski and W. Dziobiak:
The parametrized local deduction theorem for quasivarieties of algebras and its applications. Algebra Universalis 35 (1996), 713–419.
DOI 10.1007/BF01197181 |
MR 1387912
[5] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebras of Łukasiewicz Logics, Second Edition. Editions CLE. State University of Campinas, Campinas, S. P. Brazil, 1995.
[8] M. Font, A. J. Rogriguez and A. Torrens:
Wajsberg algebras. Stochastica (1984), 5–31.
MR 0780136
[10] H. Gaitán:
Quasivarieties of Wajsberg algebras. J. Non-Classical Logic 8 (1991), 79–101.
MR 1209377
[11] H. Gaitán:
The number simple of bounded commoutative BCK-chains with one generator. Math. Japon. 38 (1993), 483–486.
MR 1221017
[12] D. Mundici: A Short Introduction to the Algebras of Many-Valued Logic. Monograph.
[13] D. Mundici:
MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japon. 31 (1986), 889–894.
MR 0870978 |
Zbl 0633.03066
[14] A. Romanowska:
Commutative BCK-chains with one generator. Math. Japon. 30 (1985), 663–670.
MR 0812017 |
Zbl 0583.03051
[15] A. Romanowska and T. Traczyk:
On the structure of commutative BCK-chains. Math. Japon. 26 (1981), 433–442.
MR 0634919
[16] A. Romanowska and T. Traczyk:
Commutative BCK-algebras. Subdirectly irreducible algebras and varieties. Math. Japon. 27 (1982), 35–48.
MR 0649018
[17] T. Traczyk:
Free bounded commutative BCK-algebras with one free generator. Demonstratio Mathemetica XVI (1983), 1049–1056.
MR 0744781