Previous |  Up |  Next

Article

Summary:
In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.
References:
[1] W. J.  Blok and D. Pigozzi: On the congruence extension property. Algebra Universalis 38 (1997), 391–394. DOI 10.1007/s000120050060 | MR 1626343
[2] S.  Burris and H. P.  Sankappanavar: A Course in Universal Algebra. Springer-Verlag, New York, 1981. MR 0648287
[3] J.  Czelakowski and W.  Dziobiak: The parametrized local deduction theorem for quasivarieties of algebras and its applications. Algebra Universalis 35 (1996), 713–419. DOI 10.1007/BF01197181 | MR 1387912
[4] C. C.  Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[5] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebras of Łukasiewicz Logics, Second Edition. Editions CLE. State University of Campinas, Campinas, S. P. Brazil, 1995.
[6] A.  Dinola and A.  Lettieri: Equational characterization of all varieties of MV-algebras. J.  Algebra 221 (1999), 463–474. DOI 10.1006/jabr.1999.7900 | MR 1726709
[7] A.  Dinola, R.  Grigolia and G.  Panti: Finitely generated free MV-algebras and their automorphism groups. Studia Logica 61 (1998), 65–78. DOI 10.1023/A:1005030314538 | MR 1639698
[8] M.  Font, A. J.  Rogriguez and A.  Torrens: Wajsberg algebras. Stochastica (1984), 5–31. MR 0780136
[9] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. MR 0171864 | Zbl 0137.02001
[10] H.  Gaitán: Quasivarieties of Wajsberg algebras. J. Non-Classical Logic 8 (1991), 79–101. MR 1209377
[11] H.  Gaitán: The number simple of bounded commoutative BCK-chains with one generator. Math. Japon. 38 (1993), 483–486. MR 1221017
[12] D.  Mundici: A Short Introduction to the Algebras of Many-Valued Logic. Monograph.
[13] D.  Mundici: MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japon. 31 (1986), 889–894. MR 0870978 | Zbl 0633.03066
[14] A.  Romanowska: Commutative BCK-chains with one generator. Math. Japon. 30 (1985), 663–670. MR 0812017 | Zbl 0583.03051
[15] A.  Romanowska and T.  Traczyk: On the structure of commutative BCK-chains. Math. Japon. 26 (1981), 433–442. MR 0634919
[16] A.  Romanowska and T.  Traczyk: Commutative BCK-algebras. Subdirectly irreducible algebras and varieties. Math. Japon. 27 (1982), 35–48. MR 0649018
[17] T.  Traczyk: Free bounded commutative BCK-algebras with one free generator. Demonstratio Mathemetica XVI (1983), 1049–1056. MR 0744781
Partner of
EuDML logo