Previous |  Up |  Next

Article

Title: Continuous extendibility of solutions of the third problem for the Laplace equation (English)
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 669-688
Summary lang: English
.
Category: math
.
Summary: A necessary and sufficient condition for the continuous extendibility of a solution of the third problem for the Laplace equation is given. (English)
Keyword: third problem
Keyword: Laplace equation
Keyword: continuous extendibility
MSC: 31B10
MSC: 35B65
MSC: 35J05
MSC: 35J25
idZBL: Zbl 1080.35009
idMR: MR2000062
.
Date available: 2009-09-24T11:05:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127832
.
Reference: [1] V.  Anandam and M. A.  Al-Gwaiz: Global representation of harmonic and biharmonic functions.Potential Anal. 6 (1997), 207–214. MR 1452543, 10.1023/A:1017908608650
Reference: [2] V.  Anandam and M.  Damlakhi: Harmonic singularity at infinity in  $R^n$.Real Anal. Exchange 23 (1997/8), 471–476. MR 1639952
Reference: [3] T. S.  Angell, R.  E.  Kleinman and J.  Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
Reference: [4] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions.Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152 (In Russian).
Reference: [5] L. E.  Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics 128.Cambridge University Press, 2000. MR 1751289
Reference: [6] N. V.  Grachev and V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19 (1986), 60–64. MR 0880678
Reference: [7] N. V.  Grachev and V. G.  Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden, .
Reference: [8] N. V.  Grachev and V. G.  Maz’ya: Solvability of a boundary integral equation on a polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden, .
Reference: [9] N. V.  Grachev and V. G.  Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points.Report LiTH-MAT-R-91-06, Linköping Univ., Sweden, .
Reference: [10] L. L.  Helms: Introduction to Potential Theory. Pure and Applied Mathematics 22.John Wiley & Sons, 1969. MR 0261018
Reference: [11] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980. MR 0590244
Reference: [12] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580
Reference: [13] J. Král and W. L.  Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Aplikace matematiky 31 (1986), 293–308. MR 0854323
Reference: [14] N. L.  Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
Reference: [15] D.  Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslovak Math.  J. 47(122) (1997), 651–679. MR 1479311, 10.1023/A:1022818618177
Reference: [16] D.  Medková: Solution of the Robin problem for the Laplace equation.Appl. Math. 43 (1998), 133–155. MR 1609158, 10.1023/A:1023267018214
Reference: [17] D.  Medková: Solution of the Neumann problem for the Laplace equation.Czechoslovak Math.  J. 48(123) (1998), 768–784. MR 1658269, 10.1023/A:1022447908645
Reference: [18] D.  Medková: Continuous extendibility of solutions of the Neumann problem for the Laplace equation.Czechoslovak Math.  J 53(128) (2003), 377–395. MR 1983459, 10.1023/A:1026239404667
Reference: [19] J.  Nečas: Les méthodes directes en théorie des équations élliptiques.Academia, Prague, 1967. MR 0227584
Reference: [20] I.  Netuka: Fredholm radius of a potential theoretic operator for convex sets.Čas. pěst. mat. 100 (1975), 374–383. Zbl 0314.31006, MR 0419794
Reference: [21] I.  Netuka: Generalized Robin problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 312–324. Zbl 0241.31008, MR 0294673
Reference: [22] I.  Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 462–489. Zbl 0241.31009, MR 0316733
Reference: [23] I.  Netuka: The third boundary value problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [24] I.  Netuka: Continuity and maximum principle for potentials of signed measures.Czechoslovak Math.  J. 25(100) (1975), 309–316. Zbl 0309.31019, MR 0382690
Reference: [25] A.  Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron.The panel method. Appl. Anal. 45 (1992), 1–4, 135–177. MR 1293594, 10.1080/00036819208840093
Reference: [26] A.  Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum.Appl. Anal. 56 (1995), 109–115. Zbl 0921.31004, MR 1378015, 10.1080/00036819508840313
Reference: [27] G. E.  Shilov: Mathematical analysis. Second special course.Nauka, Moskva, 1965. (Russian) MR 0219869
Reference: [28] Ch. G.  Simader and H.  Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains.Pitman Research Notes in Mathematics Series 360, Addison Wesley Longman Inc., 1996. MR 1454361
Reference: [29] M.  Schechter: Principles of Functional Analysis.Academic press, New York-London, 1973. MR 0467221
Reference: [30] W. P.  Ziemer: Weakly Differentiable Functions.Springer Verlag, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_53-2003-3_15.pdf 402.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo