Previous |  Up |  Next

Article

Keywords:
compressible Navier-Stokes equations; global-in-time solutions; large time bahaviour
Summary:
We show that the global-in-time solutions to the compressible Navier-Stokes equations driven by highly oscillating external forces stabilize to globally defined (on the whole real line) solutions of the same system with the driving force given by the integral mean of oscillations. Several stability results will be obtained.
References:
[1] V. V.  Chepyzhov and M. I.  Vishik: Evolution equations and their trajectory attractors. J.  Math. Pures Appl. 76 (1997), 913–964. DOI 10.1016/S0021-7824(97)89978-3 | MR 1489945
[2] E. Feireisl: Propagation of oscillations, complete trajectories and attractors for compressible flows. NoDEA 10 (2003), 33–55. DOI 10.1007/s00030-003-1028-z | MR 1978085 | Zbl 1025.35019
[3] E. Feireisl, Š. Matušů-Nečasová, H. Petzeltová and I. Straškraba: On the motion of a viscous compressible flow driven by a time-periodic external flow. Arch. Rational Mech. Anal. 149 (1999), 69–96. DOI 10.1007/s002050050168 | MR 1723036
[4] E. Feireisl, A. Novotný and H. Petzeltová: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J.  Math. Fluid Dynamics 3 (2000 2001), 358–218. MR 1867887
[5] E. Feireisl and H. Petzeltová: On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow. Manuscr. Math. 97 (1998), 109–116. DOI 10.1007/s002290050089 | MR 1642646
[6] E. Feireisl and H. Petzeltová: Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow. Arch. Rational Mech. Anal. 150 (1999), 77–96. DOI 10.1007/s002050050181 | MR 1738166
[7] E. Feireisl and H. Petzeltová: Zero-velocity-limit solutions to the Navier-Stokes equations of compressible fluid revisited. Ann. Univ. Ferrara 46 (2000), 209–218. MR 1896932
[8] E. Feireisl and H. Petzeltová: Asymptotic compactness of global trajectories generated by the Navier-Stokes equations of compressible fluid. J.  Differential Equations 173 (2001), 390–409. DOI 10.1006/jdeq.2000.3935 | MR 1834120
[9] E. Feireisl and H. Petzeltová: Bounded absorbing sets for the Navier-Stokes equations of compressible fluid. Commun. Partial Differential Equations 26 (2001), 1133–1144. DOI 10.1081/PDE-100106129 | MR 1855274
[10] E. Feireisl and H. Petzeltová: On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow. Commun. Partial Differential Equations 25 (2000), 755–767. DOI 10.1080/03605300008821530 | MR 1748351
[11] J.-F.  Gerbeau and C. LeBris: On the long time behaviour of the solution to the two-fluids incompressible Navier-Stokes equations. Differential Integral Equations 12 (1999), 691–740. MR 1697251
[12] D. Hoff and M. Ziane: The global attractor and finite determining modes for the Navier-Stokes equations of compressible flow with singular initial data. Indiana Univ. Math. J. 49 (2000), 843–889. MR 1803214
[13] P.-L.  Lions: Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford, 1998. MR 1637634
[14] A. Novotný and I. Straškraba: Convergence to equilibria for compressible Navier-Stokes equations with large data. Ann. Mat. Pura Appl. 179 (2001), 263–287. DOI 10.1007/BF02505958 | MR 1848754
[15] I. Straškraba: Asymptotic development of vacuum for 1-dimensional Navier-Stokes equations of compressible flow. Nonlinear World 3 (1996), 519–533. MR 1411368
Partner of
EuDML logo