| Title:
             | 
Statistical cluster points of sequences in finite dimensional spaces (English) | 
| Author:
             | 
Pehlivan, S. | 
| Author:
             | 
Güncan, A. | 
| Author:
             | 
Mamedov, M. A. | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
54 | 
| Issue:
             | 
1 | 
| Year:
             | 
2004 | 
| Pages:
             | 
95-102 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we study the set of statistical cluster points of sequences in $m$-dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in $m$-dimensional spaces too. We also define a notion of $\Gamma $-statistical convergence. A sequence  $x$ is $\Gamma $-statistically convergent to a set  $C$ if $C$ is a minimal closed set such that for every $\epsilon > 0 $ the set $ \lbrace k\:\rho (C, x_k ) \ge \epsilon \rbrace $ has density zero. It is shown that every statistically bounded sequence is $\Gamma $-statistically convergent. Moreover if a sequence is $\Gamma $-statistically convergent then the limit set is a set of statistical cluster points. (English) | 
| Keyword:
             | 
compact sets | 
| Keyword:
             | 
natural density | 
| Keyword:
             | 
statistically bounded sequence | 
| Keyword:
             | 
statistical cluster point | 
| MSC:
             | 
11B05 | 
| MSC:
             | 
40A05 | 
| idZBL:
             | 
Zbl 1045.40004 | 
| idMR:
             | 
MR2040222 | 
| . | 
| Date available:
             | 
2009-09-24T11:10:02Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127867 | 
| . | 
| Reference:
             | 
[1] J. S. Connor: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458 | 
| Reference:
             | 
[2] H.  Fast: Sur la convergence statistique.Collog. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244 | 
| Reference:
             | 
[3] J. A. Fridy: On statistical convergence.Analysis 5 (1985), 301–313. Zbl 0588.40001, MR 0816582 | 
| Reference:
             | 
[4] J. A. Fridy: Statistical limit points.Proc. Amer. Math. Soc. 118 (1993), 1187–1192. Zbl 0776.40001, MR 1181163, 10.1090/S0002-9939-1993-1181163-6 | 
| Reference:
             | 
[5] J. A. Fridy and C.  Orhan: Statistical limit superior and limit inferior.Proc. Amer. Math. Soc. 125 (1997), 3625–3631. MR 1416085, 10.1090/S0002-9939-97-04000-8 | 
| Reference:
             | 
[6] E.  Kolk: The statistical convergence in Banach spaces.Acta Comm. Univ. Tartuensis 928 (1991), 41–52. MR 1150232 | 
| Reference:
             | 
[7] S.  Pehlivan and M. A. Mamedov: Statistical cluster points and turnpike.Optimization 48 (2000), 93–106. MR 1772096, 10.1080/02331930008844495 | 
| Reference:
             | 
[8] M. A.  Mamedov and S. Pehlivan: Statistical cluster points and Turnpike theorem in nonconvex problems.J.  Math. Anal. Appl. 256 (2001), 686–693. MR 1821765, 10.1006/jmaa.2000.7061 | 
| Reference:
             | 
[9] T. Šalát: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139–150. MR 0587239 | 
| . |