Previous |  Up |  Next

Article

Title: An example of a positive semidefinite double sequence which is not a moment sequence (English)
Author: Bisgaard, Torben Maack
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 273-277
Summary lang: English
.
Category: math
.
Summary: The first explicit example of a positive semidefinite double sequence which is not a moment sequence was given by Friedrich. We present an example with a simpler definition and more moderate growth as $(m, n) \rightarrow \infty $. (English)
Keyword: double sequence
Keyword: positive definite
Keyword: moment sequence
MSC: 43A35
MSC: 44A60
idZBL: Zbl 1080.43500
idMR: MR2059249
.
Date available: 2009-09-24T11:12:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127886
.
Reference: [1] C. Berg, J. P. R. Christensen and C. U. Jensen: A remark on the multidimensional moment problem.Math. Ann. 243 (1979), 163–169. MR 0543726, 10.1007/BF01420423
Reference: [2] C. Berg, J. P. R. Christensen and P. Ressel: Harmonic Analysis on Semigroups.Springer-Verlag, Berlin, 1984. MR 0747302
Reference: [3] T. M. Bisgaard: On the growth of positive definite double sequences which are not moment sequences.Math. Nachr. 210 (2000), 67–83. Zbl 0953.43004, MR 1738938, 10.1002/(SICI)1522-2616(200002)210:1<67::AID-MANA67>3.0.CO;2-N
Reference: [4] T. M. Bisgaard and P. Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups.Math.  Z. 200 (1989), 511–525. MR 0987584, 10.1007/BF01160953
Reference: [5] J. Friedrich: A note on the two-dimensional moment problem.Math. Nachr. 121 (1985), 285–286. Zbl 0578.44006, MR 0809325, 10.1002/mana.19851210118
Reference: [6] H. L. Hamburger: Über eine Erweiterung des Stieltjesschen Momentenproblemes.Math. Ann. 81, 82 (1920, 1921), 235–319, 120–164, 168–187.
Reference: [7] Y. Nakamura and N.  Sakakibara: Perfectness of certain subsemigroups of a perfect semigroup.Math. Ann. 287 (1990), 213–220. MR 1054564, 10.1007/BF01446888
Reference: [8] K. Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional.Math. Nachr. 88 (1979), 385–390. MR 0543417, 10.1002/mana.19790880130
.

Files

Files Size Format View
CzechMathJ_54-2004-2_1.pdf 312.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo