Previous |  Up |  Next

Article

Title: $\mu$-statistically convergent function sequences (English)
Author: Duman, O.
Author: Orhan, C.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 413-422
Summary lang: English
.
Category: math
.
Summary: In the present paper we are concerned with convergence in $\mu $-density and $\mu $-statistical convergence of sequences of functions defined on a subset $D$ of real numbers, where $\mu $ is a finitely additive measure. Particularly, we introduce the concepts of $\mu $-statistical uniform convergence and $\mu $-statistical pointwise convergence, and observe that $\mu $-statistical uniform convergence inherits the basic properties of uniform convergence. (English)
Keyword: pointwise and uniform convergence
Keyword: $\mu $-statistical convergence
Keyword: convergence in $\mu $-density
Keyword: finitely additive measure
Keyword: additive property for null sets
MSC: 40A30
idZBL: Zbl 1080.40501
idMR: MR2059262
.
Date available: 2009-09-24T11:13:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127899
.
Reference: [1] R. G.  Bartle: Elements of Real Analysis.John Wiley & Sons, Inc., New York, 1964. MR 0393369
Reference: [2] J.  Connor: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458, 10.1524/anly.1988.8.12.47
Reference: [3] J.  Connor: Two valued measures and summability.Analysis 10 (1990), 373–385. Zbl 0726.40009, MR 1085803, 10.1524/anly.1990.10.4.373
Reference: [4] J.  Connor: $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence.Proc. Amer. Math. Soc. 115 (1992), 319–327. Zbl 0765.40002, MR 1095221
Reference: [5] J.  Connor and M. A.  Swardson: Strong integral summability and the Stone-Čech compactification of the half-line.Pacific J.  Math. 157 (1993), 201–224. MR 1197054, 10.2140/pjm.1993.157.201
Reference: [6] J.  Connor: A topological and functional analytic approach to statistical convergence.Analysis of Divergence, Birkhäuser-Verlag, Boston, 1999, pp. 403–413. Zbl 0915.40002, MR 1734462
Reference: [7] J.  Connor and J.  Kline: On statistical limit points and the consistency of statistical convergence.J.  Math. Anal. Appl. 197 (1996), 393–399. MR 1372186, 10.1006/jmaa.1996.0027
Reference: [8] J.  Connor, M.  Ganichev and V.  Kadets: A characterization of Banach spaces with separable duals via weak statistical convergence.J.  Math. Anal. Appl. 244 (2000), 251–261. MR 1746802, 10.1006/jmaa.2000.6725
Reference: [9] K.  Demirci and C.  Orhan: Bounded multipliers of bounded $A$-statistically convergent sequences.J.  Math. Anal. Appl. 235 (1999), 122–129. MR 1758671, 10.1006/jmaa.1999.6371
Reference: [10] H.  Fast: Sur la convergence statistique.Colloq. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [11] J. A.  Fridy: On statistical convergence.Analysis 5 (1985), 301–313. Zbl 0588.40001, MR 0816582, 10.1524/anly.1985.5.4.301
Reference: [12] J. A.  Fridy and C.  Orhan: Lacunary statistical convergence.Pacific J.  Math. 160 (1993), 43–51. MR 1227502, 10.2140/pjm.1993.160.43
Reference: [13] J. A.  Fridy and C.  Orhan: Lacunary statistical summability.J.  Math. Anal. Appl. 173 (1993), 497–503. MR 1209334, 10.1006/jmaa.1993.1082
Reference: [14] J. A.  Fridy and M. K.  Khan: Tauberian theorems via statistical convergence.J.  Math. Anal. Appl. 228 (1998), 73–95. MR 1659877, 10.1006/jmaa.1998.6118
Reference: [15] E.  Kolk: Convergence-preserving function sequences and uniform convergence.J.  Math. Anal. Appl. 238 (1999), 599–603. Zbl 0939.40001, MR 1715505, 10.1006/jmaa.1999.6533
Reference: [16] I. J.  Maddox: Statistical convergence in a locally convex space.Math. Proc. Cambridge Phil. Soc. 104 (1988), 141–145. Zbl 0674.40008, MR 0938459, 10.1017/S0305004100065312
Reference: [17] H. I.  Miller: A measure theoretical subsequence characterization of statistical convergence.Trans. Amer. Math. Soc. 347 (1995), 1811–1819. Zbl 0830.40002, MR 1260176, 10.1090/S0002-9947-1995-1260176-6
Reference: [18] T.  Šálat: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139–150. MR 0587239
Reference: [19] H.  Steinhaus: Sur la convergence ordinaire et la convergence asymptotique.Colloq. Math. 2 (1951), 73–74.
Reference: [20] W.  Wilczyński: Statistical convergence of sequences of functions.Real Anal. Exchange 25 (2000), 49–50. 10.2307/44153029
Reference: [21] A.  Zygmund: Trigonometric Series. Second edition.Cambridge Univ. Press, Cambridge, 1979.
.

Files

Files Size Format View
CzechMathJ_54-2004-2_14.pdf 341.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo