Article
Keywords:
non-archimedean Fréchet spaces; homeomorphisms
Summary:
We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^{\mathbb{N}}$ where $D$ is a discrete space with $\mathop {\mathrm card}(D)=\mathop {\mathrm dens}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop {\mathrm dens}(E)= \mathop {\mathrm dens}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb{K}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb{K}^{\mathbb{N}}$.
References:
[1] L. E. J. Brouver: On the structure of perfect sets of points. Proc. Acad. Amsterdam 12 (1910), 785–794.
[2] J. Kąkol, C. Perez-Garcia and W. Schikhof:
Cardinality and Mackey topologies of non-Archimedean Banach and Fréchet spaces. Bull. Polish Acad. Sci. Math. 44 (1996), 131–141.
MR 1416418
[3] J. B. Prolla:
Topics in Functional Analysis over Valued Division Rings. North-Holland Math. Studies 77, North-Holland Publ. Co., Amsterdam, 1982.
MR 0688308 |
Zbl 0506.46059
[4] A. C. M. van Rooij: Notes on $p$-adic Banach spaces. Report 7633, Mathematisch Instituut, Katholieke Universiteit, Nijmegen, The Netherlands, 1976, pp. 1–62.
[6] W. H. Schikhof:
Locally convex spaces over non-spherically complete valued fields. Bull. Soc. Math. Belgique 38 (1986), 187–207.
MR 0871313