Previous |  Up |  Next

Article

Title: Commuting Toeplitz operators on the pluriharmonic Bergman space (English)
Author: Lee, Young Joo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 535-544
Summary lang: English
.
Category: math
.
Summary: We prove that two Toeplitz operators acting on the pluriharmonic Bergman space with radial symbol and pluriharmonic symbol respectively commute only in an obvious case. (English)
Keyword: Toeplitz operators
Keyword: pluriharmonic Bergman space
MSC: 31C10
MSC: 47B35
idZBL: Zbl 1080.47028
idMR: MR2059271
.
Date available: 2009-09-24T11:15:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127908
.
Reference: [1] A.  Brown and P. R.  Halmos: Algebraic properties of Toeplitz operators.J.  Reine Angew. Math. 213 (1963/64), 89–102. MR 0160136
Reference: [2] B. R.  Choe and Y. J.  Lee: Commuting Toeplitz operators on the harmonic Bergman space.Michigan Math.  J. 46 (1999), 163–174. MR 1682896, 10.1307/mmj/1030132367
Reference: [3] B. R.  Choe and Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz operators.Illinois J.  Math. 37 (1993), 424–436. MR 1219648, 10.1215/ijm/1255987059
Reference: [4] . uković and N. V.  Rao: Mellin transform, monomial symbols, and commuting Toeplitz operators.J.  Funct. Anal. 154 (1998), 195–214. MR 1616532, 10.1006/jfan.1997.3204
Reference: [5] Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz type operators.Bull. Austral. Math. Soc. 54 (1996), 67–77. Zbl 0881.47015, MR 1402993, 10.1017/S0004972700015082
Reference: [6] Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces.Canad. Math. Bull. 41 (1998), 129–136. Zbl 0920.47024, MR 1624149, 10.4153/CMB-1998-020-7
Reference: [7] Y. J.  Lee and K.  Zhu: Some differential and integral equations with applications to Toeplitz operators.Integral Equation Operator Theory 44 (2002), 466–479. MR 1942036, 10.1007/BF01193672
Reference: [8] S.  Ohno: Toeplitz and Hankel operators on harmonic Bergman spaces.Preprint.
Reference: [9] W.  Rudin: Function Theory in the Unit Ball of  $\mathbb{C}^n$.Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0601594
Reference: [10] D.  Zheng: Commuting Toeplitz operators with pluriharmonic symbols.Trans. Amer. Math. Soc. 350 (1998), 1595–1618. Zbl 0893.47015, MR 1443898, 10.1090/S0002-9947-98-02051-0
.

Files

Files Size Format View
CzechMathJ_54-2004-2_23.pdf 311.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo