Title:
|
Injective and projective properties of $R[x]$-modules (English) |
Author:
|
Park, Sangwon |
Author:
|
Cho, Eunha |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
573-578 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study whether the projective and injective properties of left $R$-modules can be implied to the special kind of left $R[x]$-modules, especially to the case of inverse polynomial modules and Laurent polynomial modules. (English) |
Keyword:
|
module |
Keyword:
|
inverse polynomial module |
Keyword:
|
injective module |
Keyword:
|
projective modules |
MSC:
|
13C11 |
MSC:
|
16D40 |
MSC:
|
16D50 |
MSC:
|
16D80 |
MSC:
|
16E30 |
MSC:
|
16S36 |
MSC:
|
16W60 |
idZBL:
|
Zbl 1080.16502 |
idMR:
|
MR2086717 |
. |
Date available:
|
2009-09-24T11:15:32Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127912 |
. |
Reference:
|
[1] A. S. McKerrow: On the injective dimension of modules of power series.Quart. J. Math. Oxford 25 (1974), 359–368. Zbl 0302.16027, MR 0371881, 10.1093/qmath/25.1.359 |
Reference:
|
[2] L. Melkersson: Content and inverse polynomials on artinian modules.Comm. Algebra 26 (1998), 1141–1145. Zbl 0931.13005, MR 1612204, 10.1080/00927879808826189 |
Reference:
|
[3] D. G. Northcott: Injective envelopes and inverse polynomials.London Math. Soc. 3 (1974), 290–296. Zbl 0284.13012, MR 0360555, 10.1112/jlms/s2-8.2.290 |
Reference:
|
[4] S. Park: Inverse ploynomials and injective covers.Comm. Algebra 21 (1993), 4599–4613. MR 1242851, 10.1080/00927879308824819 |
Reference:
|
[5] S. Park: The Macaulay-Northcott functor.Arch. Math. (Basel) 63 (1994), 225–230. Zbl 0804.18009, MR 1287251, 10.1007/BF01189824 |
Reference:
|
[6] S. Park: Gorenstein rings and inverse polynomials.Comm. Algebra 28 (2000), 785–789. Zbl 0957.13005, MR 1736762, 10.1080/00927870008826859 |
Reference:
|
[7] S. Park: Left global dimensions and inverse polynomil modules.Internat. J. Math. Math. Sci. 24 (2000), 437–440. MR 1781510, 10.1155/S0161171200004129 |
Reference:
|
[8] S. Park: The general structure of inverse polynomial modules.Czechoslovak Math. J. 51(126) (2001), 343–349. Zbl 0983.16006, MR 1844314, 10.1023/A:1013798914813 |
. |