Previous |  Up |  Next

Article

Title: Injective and projective properties of $R[x]$-modules (English)
Author: Park, Sangwon
Author: Cho, Eunha
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 573-578
Summary lang: English
.
Category: math
.
Summary: We study whether the projective and injective properties of left $R$-modules can be implied to the special kind of left $R[x]$-modules, especially to the case of inverse polynomial modules and Laurent polynomial modules. (English)
Keyword: module
Keyword: inverse polynomial module
Keyword: injective module
Keyword: projective modules
MSC: 13C11
MSC: 16D40
MSC: 16D50
MSC: 16D80
MSC: 16E30
MSC: 16S36
MSC: 16W60
idZBL: Zbl 1080.16502
idMR: MR2086717
.
Date available: 2009-09-24T11:15:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127912
.
Reference: [1] A. S.  McKerrow: On the injective dimension of modules of power series.Quart. J.  Math. Oxford 25 (1974), 359–368. Zbl 0302.16027, MR 0371881, 10.1093/qmath/25.1.359
Reference: [2] L.  Melkersson: Content and inverse polynomials on artinian modules.Comm. Algebra 26 (1998), 1141–1145. Zbl 0931.13005, MR 1612204, 10.1080/00927879808826189
Reference: [3] D. G.  Northcott: Injective envelopes and inverse polynomials.London Math. Soc. 3 (1974), 290–296. Zbl 0284.13012, MR 0360555, 10.1112/jlms/s2-8.2.290
Reference: [4] S.  Park: Inverse ploynomials and injective covers.Comm. Algebra 21 (1993), 4599–4613. MR 1242851, 10.1080/00927879308824819
Reference: [5] S.  Park: The Macaulay-Northcott functor.Arch. Math. (Basel) 63 (1994), 225–230. Zbl 0804.18009, MR 1287251, 10.1007/BF01189824
Reference: [6] S.  Park: Gorenstein rings and inverse polynomials.Comm. Algebra 28 (2000), 785–789. Zbl 0957.13005, MR 1736762, 10.1080/00927870008826859
Reference: [7] S.  Park: Left global dimensions and inverse polynomil modules.Internat. J.  Math. Math. Sci. 24 (2000), 437–440. MR 1781510, 10.1155/S0161171200004129
Reference: [8] S.  Park: The general structure of inverse polynomial modules.Czechoslovak Math.  J. 51(126) (2001), 343–349. Zbl 0983.16006, MR 1844314, 10.1023/A:1013798914813
.

Files

Files Size Format View
CzechMathJ_54-2004-3_3.pdf 297.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo