Title:
|
A full characterization of multipliers for the strong $\rho$-integral in the euclidean space (English) |
Author:
|
Tuo-Yeong, Lee |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
657-674 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study a generalization of the classical Henstock-Kurzweil integral, known as the strong $\rho $-integral, introduced by Jarník and Kurzweil. Let $(\mathcal S_{\rho } (E), \Vert \cdot \Vert )$ be the space of all strongly $\rho $-integrable functions on a multidimensional compact interval $E$, equipped with the Alexiewicz norm $\Vert \cdot \Vert $. We show that each element in the dual space of $(\mathcal S_{\rho } (E), \Vert \cdot \Vert )$ can be represented as a strong $\rho $-integral. Consequently, we prove that $fg$ is strongly $\rho $-integrable on $E$ for each strongly $\rho $-integrable function $f$ if and only if $g$ is almost everywhere equal to a function of bounded variation (in the sense of Hardy-Krause) on $E$. (English) |
Keyword:
|
strong $\rho $-integral |
Keyword:
|
multipliers |
Keyword:
|
dual space |
MSC:
|
26A39 |
MSC:
|
46E99 |
MSC:
|
46G10 |
idZBL:
|
Zbl 1080.26007 |
idMR:
|
MR2086723 |
. |
Date available:
|
2009-09-24T11:16:15Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127918 |
. |
Reference:
|
[1] A. Alexiewicz: Linear functionals on Denjoy-integrable functions.Colloq. Math. 1 (1948), 289–293. Zbl 0037.32302, MR 0030120, 10.4064/cm-1-4-289-293 |
Reference:
|
[2] R. A. Gordon: The Integrals of Lebesgue.Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994. Zbl 0807.26004, MR 1288751 |
Reference:
|
[3] J. Jarník and Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (120) (1995), 79–106. MR 1314532 |
Reference:
|
[4] J. Kurzweil: On multiplication of Perron integrable functions.Czechoslovak Math. J. 23 (98) (1973), 542–566. Zbl 0269.26007, MR 0335705 |
Reference:
|
[5] J. Kurzweil and J. Jarník: Perron-type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence.Czechoslovak Math. J. 46 (121) (1996), 1–20. MR 1371683 |
Reference:
|
[6] Lee Peng Yee: Lanzhou Lectures on Henstock integration.World Scientific, 1989. Zbl 0699.26004, MR 1050957 |
Reference:
|
[7] Lee Peng Yee and Rudolf Výborný: The integral: An Easy Approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. MR 1756319 |
Reference:
|
[8] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: Characterisation of multipliers for the double Henstock integrals.Bull. Austral. Math. Soc. 54 (1996), 441–449. MR 1419607, 10.1017/S0004972700021857 |
Reference:
|
[9] Lee Tuo Yeong: Multipliers for some non-absolute integrals in the Euclidean spaces.Real Anal. Exchange 24 (1998/99), 149–160. MR 1691742 |
Reference:
|
[10] G. Q. Liu: The dual of the Henstock-Kurzweil space.Real Anal. Exchange 22 (1996/97), 105–121. MR 1433600 |
Reference:
|
[11] E. J. McShane: Integration.Princeton Univ. Press, 1944. Zbl 0060.13010, MR 0082536 |
Reference:
|
[12] Piotr Mikusiński and K. Ostaszewski: The space of Henstock integrable functions II.In: New integrals. Proc. Henstock Conf., Coleraine / Ireland, P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer (eds.), 1988. |
Reference:
|
[13] K. M. Ostaszewski: The space of Henstock integrable functions of two variables.Internat. J. Math. Math. Sci. 11 (1988), 15–22. Zbl 0662.26003, MR 0918213, 10.1155/S0161171288000043 |
Reference:
|
[14] S. Saks: Theory of the Integral, second edition.New York, 1964 63.0183.05. MR 0167578 |
Reference:
|
[15] W. L. C. Sargent: On the integrability of a product.J. London Math. Soc. 23 (1948), 28–34. Zbl 0031.29201, MR 0026113, 10.1112/jlms/s1-23.1.28 |
Reference:
|
[16] W. H. Young: On multiple integration by parts and the second theorem of the mean.Proc. London Math. Soc. 16 (1918), 273–293. |
. |