Previous |  Up |  Next

Article

Title: A full characterization of multipliers for the strong $\rho$-integral in the euclidean space (English)
Author: Tuo-Yeong, Lee
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 657-674
Summary lang: English
.
Category: math
.
Summary: We study a generalization of the classical Henstock-Kurzweil integral, known as the strong $\rho $-integral, introduced by Jarník and Kurzweil. Let $(\mathcal S_{\rho } (E), \Vert \cdot \Vert )$ be the space of all strongly $\rho $-integrable functions on a multidimensional compact interval $E$, equipped with the Alexiewicz norm $\Vert \cdot \Vert $. We show that each element in the dual space of $(\mathcal S_{\rho } (E), \Vert \cdot \Vert )$ can be represented as a strong $\rho $-integral. Consequently, we prove that $fg$ is strongly $\rho $-integrable on $E$ for each strongly $\rho $-integrable function $f$ if and only if $g$ is almost everywhere equal to a function of bounded variation (in the sense of Hardy-Krause) on $E$. (English)
Keyword: strong $\rho $-integral
Keyword: multipliers
Keyword: dual space
MSC: 26A39
MSC: 46E99
MSC: 46G10
idZBL: Zbl 1080.26007
idMR: MR2086723
.
Date available: 2009-09-24T11:16:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127918
.
Reference: [1] A.  Alexiewicz: Linear functionals on Denjoy-integrable functions.Colloq. Math. 1 (1948), 289–293. Zbl 0037.32302, MR 0030120, 10.4064/cm-1-4-289-293
Reference: [2] R. A.  Gordon: The Integrals of Lebesgue.Denjoy, Perron, and Henstock, Graduate Studies in Mathematics Volume 4, AMS, 1994. Zbl 0807.26004, MR 1288751
Reference: [3] J.  Jarník and Kurzweil: Perron-type integration on  $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (120) (1995), 79–106. MR 1314532
Reference: [4] J.  Kurzweil: On multiplication of Perron integrable functions.Czechoslovak Math. J. 23 (98) (1973), 542–566. Zbl 0269.26007, MR 0335705
Reference: [5] J.  Kurzweil and J.  Jarník: Perron-type integration on  $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence.Czechoslovak Math. J. 46 (121) (1996), 1–20. MR 1371683
Reference: [6] Lee Peng Yee: Lanzhou Lectures on Henstock integration.World Scientific, 1989. Zbl 0699.26004, MR 1050957
Reference: [7] Lee Peng Yee and Rudolf Výborný: The integral: An Easy Approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14, Cambridge University Press, 2000. MR 1756319
Reference: [8] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: Characterisation of multipliers for the double Henstock integrals.Bull. Austral. Math. Soc. 54 (1996), 441–449. MR 1419607, 10.1017/S0004972700021857
Reference: [9] Lee Tuo Yeong: Multipliers for some non-absolute integrals in the Euclidean spaces.Real Anal. Exchange 24 (1998/99), 149–160. MR 1691742
Reference: [10] G. Q.  Liu: The dual of the Henstock-Kurzweil space.Real Anal. Exchange 22 (1996/97), 105–121. MR 1433600
Reference: [11] E. J.  McShane: Integration.Princeton Univ. Press, 1944. Zbl 0060.13010, MR 0082536
Reference: [12] Piotr Mikusiński and K.  Ostaszewski: The space of Henstock integrable functions II.In: New integrals. Proc. Henstock Conf., Coleraine / Ireland, P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney and W. F. Pfeffer (eds.), 1988.
Reference: [13] K. M.  Ostaszewski: The space of Henstock integrable functions of two variables.Internat. J. Math. Math. Sci. 11 (1988), 15–22. Zbl 0662.26003, MR 0918213, 10.1155/S0161171288000043
Reference: [14] S.  Saks: Theory of the Integral, second edition.New York, 1964 63.0183.05. MR 0167578
Reference: [15] W. L. C.  Sargent: On the integrability of a product.J. London Math. Soc. 23 (1948), 28–34. Zbl 0031.29201, MR 0026113, 10.1112/jlms/s1-23.1.28
Reference: [16] W. H.  Young: On multiple integration by parts and the second theorem of the mean.Proc. London Math. Soc. 16 (1918), 273–293.
.

Files

Files Size Format View
CzechMathJ_54-2004-3_9.pdf 388.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo