Previous |  Up |  Next

Article

Title: Hölder regularity for nonhomogeneous elliptic systems with nonlinearity greater than two (English)
Author: Idone, Giovanna
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 817-841
Summary lang: English
.
Category: math
.
Summary: Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear growth of order $q>2$ are proved, extending results of [7] and [10]. In particular Hölder regularity of the solutions is obtained if the dimension $n$ is less than or equal to $q + 2$. (English)
Keyword: nonlinear elliptic systems
Keyword: regularity up to the boundary
MSC: 35B65
MSC: 35J55
MSC: 35J65
idZBL: Zbl 1080.35031
idMR: MR2099997
.
Date available: 2009-09-24T11:18:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127933
.
Reference: [1] S. Campanato: Equazioni ellittiche del secondo ordine e spazi $L^{2, \lambda }$.Ann. Mat. Pura e Appl. 69 (1965), 321–381. MR 0192168, 10.1007/BF02414377
Reference: [2] S. Campanato: Sistemi ellittici in forma di divergenza. Regolarità all’interno.Quaderni S.N.S. di Pisa, 1980. MR 0668196
Reference: [3] S. Campanato: Elliptic systems with nonlinearity  $q$ greater or equal to two. Regularity of the solution of the Dirichlet Problem.Ann. Mat. Pura e Appl. 147 (1987), 117–150. Zbl 0635.35038, MR 0916705, 10.1007/BF01762414
Reference: [4] S. Campanato: A maximum principle for nonlinear elliptic systems. Boundary fundamental estimates.Advances in Math. 66 (1987), 291–317. Zbl 0644.35042, MR 0915857, 10.1016/0001-8708(87)90037-5
Reference: [5] S. Campanato: A maximum principle for nonlinear elliptic systems.Atti Convegno commem. di M. Picone e L. Tonelli vol. , Acc. Lincei, Roma, 1985, pp. 173–182.
Reference: [6] E. De Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico.Boll. Un. Mat. Ital. 1 (1968), 135–137. MR 0227827
Reference: [7] L. Fattorusso, G. Idone: Hölder regularity for nonlinear nonhomogeneous elliptic systems.Le Matematiche 50 (1995), 285–306. MR 1414636
Reference: [8] J. Frehse: On the boundedness of weak solutions of higher order nonlinear elliptic partial differential equations.Boll. Un. Mat. Ital. 4 (1970), 607–627. Zbl 0203.41303, MR 0274938
Reference: [9] J. Serrin: Local behaviour of solutions of quasilinear equations.Acta Math. 111 (1964), 247–302. MR 0170096, 10.1007/BF02391014
Reference: [10] K. Widman: Hölder continuity of solutions of elliptic systems.Manuscripta Math. 5 (1971), 299–308. Zbl 0223.35044, MR 0296484, 10.1007/BF01367766
.

Files

Files Size Format View
CzechMathJ_54-2004-4_1.pdf 401.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo