Title:
|
Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces (English) |
Author:
|
Bell, M. |
Author:
|
Marciszewski, W. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
899-914 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We apply the general theory of $\tau $-Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness $\tau $. In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces. (English) |
Keyword:
|
boolean |
Keyword:
|
polyadic |
Keyword:
|
function space |
Keyword:
|
Corson |
Keyword:
|
compact |
Keyword:
|
$C_p (X)$ |
Keyword:
|
Eberlein |
Keyword:
|
tightness |
MSC:
|
54C35 |
MSC:
|
54D30 |
idZBL:
|
Zbl 1080.54508 |
idMR:
|
MR2100003 |
. |
Date available:
|
2009-09-24T11:18:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127939 |
. |
Reference:
|
[1] K. Alster and R. Pol: On function spaces of compact subspaces of $\Sigma $-products of the real line.Fund. Math. 107 (1980), 135–143. MR 0584666, 10.4064/fm-107-2-135-143 |
Reference:
|
[2] A. V. Arkhangel’skii: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1144519 |
Reference:
|
[3] M. Bell: Generalized dyadic spaces.Fund. Math. CXXV (1985), 47–58. Zbl 0589.54019, MR 0813988, 10.4064/fm-125-1-47-58 |
Reference:
|
[4] M. Bell: Tightness in polyadic spaces.Topology Proc. 25 (2000), 63–74. Zbl 1009.54031, MR 1875583 |
Reference:
|
[5] M. Bell: Polyadic spaces of countable tightness.Topology and its Applications 123 (2002), 401–407. Zbl 1008.54015, MR 1924040, 10.1016/S0166-8641(01)00206-1 |
Reference:
|
[6] Y. Benyamini, M. E. Rudin and M. Wage: Continuous images of weakly compact subsets of Banach spaces.Pacific J. Math. 70 (1977), 309–324. MR 0625889, 10.2140/pjm.1977.70.309 |
Reference:
|
[7] H. Corson: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785–796. Zbl 0095.37302, MR 0107222, 10.2307/2372929 |
Reference:
|
[8] J. Gerlits: On a generalization of dyadicity.Studia Sci. Math. Hungar. 13 (1978), 1–17. Zbl 0475.54012, MR 0630375 |
Reference:
|
[9] S. P. Gul’ko: On properties of subsets of $\Sigma $-products.Dokl. Acad. Nauk SSSR 237 (1977). MR 0461410 |
Reference:
|
[10] O. Kalenda: Embedding of the ordinal segment $[0, \omega _1]$ into continuous images of Valdivia compacta.Comment. Math. Univ. Carolin. 40 (1999), 777–783. Zbl 1009.54017, MR 1756552 |
Reference:
|
[11] O. Kalenda: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15 (2000), 1–85. Zbl 0983.46021, MR 1792980 |
Reference:
|
[12] A. Kombarov: On the normality of $\Sigma _m$-products.Dokl. Akad. Nauk SSSR 211 (1973). MR 0328861 |
Reference:
|
[13] A. Kombarov and V. Malyhin: On $\Sigma $-products.Dokl. Akad. Nauk SSSR 213 (1973). MR 0339073 |
Reference:
|
[14] S. Mardesic: On covering dimension and inverse limits of compact spaces.Illinois J. Math. 4 (1960), 278–291. Zbl 0094.16902, MR 0116306, 10.1215/ijm/1255455869 |
Reference:
|
[15] S. Mrowka: Mazur theorem and $m$-adic spaces.Bull. Acad. Pol. Sci. XVIII (1970), 299–305. Zbl 0194.54302, MR 0264613 |
Reference:
|
[16] N. Noble: Products with closed projections. II.Trans. Amer. Math. Soc. 160 (1971), 169–183. Zbl 0233.54004, MR 0283749, 10.1090/S0002-9947-1971-0283749-X |
Reference:
|
[17] G. Plebanek: Compact spaces that result from adequate families of sets.Topology Appl. 65 (1995), 257–270. MR 1357868, 10.1016/0166-8641(95)00006-3 |
Reference:
|
[18] R. Pol: On weak and pointwise topology in function spaces.University of Warsaw preprint No. 4184, Warsaw, 1984. |
Reference:
|
[19] M. Talagrand: Espaces de Banach faiblement $K$-analytiques.Ann. Math. 110 (1979), 407–438. MR 0554378, 10.2307/1971232 |
. |