Previous |  Up |  Next

Article

Title: Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces (English)
Author: Bell, M.
Author: Marciszewski, W.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 899-914
Summary lang: English
.
Category: math
.
Summary: We apply the general theory of $\tau $-Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness $\tau $. In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces. (English)
Keyword: boolean
Keyword: polyadic
Keyword: function space
Keyword: Corson
Keyword: compact
Keyword: $C_p (X)$
Keyword: Eberlein
Keyword: tightness
MSC: 54C35
MSC: 54D30
idZBL: Zbl 1080.54508
idMR: MR2100003
.
Date available: 2009-09-24T11:18:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127939
.
Reference: [1] K. Alster and R. Pol: On function spaces of compact subspaces of $\Sigma $-products of the real line.Fund. Math. 107 (1980), 135–143. MR 0584666, 10.4064/fm-107-2-135-143
Reference: [2] A. V.  Arkhangel’skii: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1144519
Reference: [3] M.  Bell: Generalized dyadic spaces.Fund. Math. CXXV (1985), 47–58. Zbl 0589.54019, MR 0813988, 10.4064/fm-125-1-47-58
Reference: [4] M. Bell: Tightness in polyadic spaces.Topology Proc. 25 (2000), 63–74. Zbl 1009.54031, MR 1875583
Reference: [5] M. Bell: Polyadic spaces of countable tightness.Topology and its Applications 123 (2002), 401–407. Zbl 1008.54015, MR 1924040, 10.1016/S0166-8641(01)00206-1
Reference: [6] Y.  Benyamini, M.  E. Rudin and M. Wage: Continuous images of weakly compact subsets of Banach spaces.Pacific J. Math. 70 (1977), 309–324. MR 0625889, 10.2140/pjm.1977.70.309
Reference: [7] H.  Corson: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785–796. Zbl 0095.37302, MR 0107222, 10.2307/2372929
Reference: [8] J. Gerlits: On a generalization of dyadicity.Studia Sci. Math. Hungar. 13 (1978), 1–17. Zbl 0475.54012, MR 0630375
Reference: [9] S. P. Gul’ko: On properties of subsets of $\Sigma $-products.Dokl. Acad. Nauk SSSR 237 (1977). MR 0461410
Reference: [10] O.  Kalenda: Embedding of the ordinal segment $[0, \omega _1]$ into continuous images of Valdivia compacta.Comment. Math. Univ. Carolin. 40 (1999), 777–783. Zbl 1009.54017, MR 1756552
Reference: [11] O.  Kalenda: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15 (2000), 1–85. Zbl 0983.46021, MR 1792980
Reference: [12] A.  Kombarov: On the normality of $\Sigma _m$-products.Dokl. Akad. Nauk SSSR 211 (1973). MR 0328861
Reference: [13] A.  Kombarov and V.  Malyhin: On $\Sigma $-products.Dokl. Akad. Nauk SSSR 213 (1973). MR 0339073
Reference: [14] S.  Mardesic: On covering dimension and inverse limits of compact spaces.Illinois J. Math. 4 (1960), 278–291. Zbl 0094.16902, MR 0116306, 10.1215/ijm/1255455869
Reference: [15] S.  Mrowka: Mazur theorem and $m$-adic spaces.Bull. Acad. Pol. Sci. XVIII (1970), 299–305. Zbl 0194.54302, MR 0264613
Reference: [16] N.  Noble: Products with closed projections. II.Trans. Amer. Math. Soc. 160 (1971), 169–183. Zbl 0233.54004, MR 0283749, 10.1090/S0002-9947-1971-0283749-X
Reference: [17] G.  Plebanek: Compact spaces that result from adequate families of sets.Topology Appl. 65 (1995), 257–270. MR 1357868, 10.1016/0166-8641(95)00006-3
Reference: [18] R.  Pol: On weak and pointwise topology in function spaces.University of Warsaw preprint No. 4184, Warsaw, 1984.
Reference: [19] M.  Talagrand: Espaces de Banach faiblement $K$-analytiques.Ann. Math. 110 (1979), 407–438. MR 0554378, 10.2307/1971232
.

Files

Files Size Format View
CzechMathJ_54-2004-4_7.pdf 406.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo