| Title: | Function spaces on $\tau$-Corson compacta and tightness of polyadic spaces (English) | 
| Author: | Bell, M. | 
| Author: | Marciszewski, W. | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 54 | 
| Issue: | 4 | 
| Year: | 2004 | 
| Pages: | 899-914 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We apply the general theory of $\tau $-Corson Compact spaces to remove an unnecessary hypothesis of zero-dimensionality from a theorem on polyadic spaces of tightness $\tau $. In particular, we prove that polyadic spaces of countable tightness are Uniform Eberlein compact spaces. (English) | 
| Keyword: | boolean | 
| Keyword: | polyadic | 
| Keyword: | function space | 
| Keyword: | Corson | 
| Keyword: | compact | 
| Keyword: | $C_p (X)$ | 
| Keyword: | Eberlein | 
| Keyword: | tightness | 
| MSC: | 54C35 | 
| MSC: | 54D30 | 
| idZBL: | Zbl 1080.54508 | 
| idMR: | MR2100003 | 
| . | 
| Date available: | 2009-09-24T11:18:46Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127939 | 
| . | 
| Reference: | [1] K. Alster and R. Pol: On function spaces of compact subspaces of $\Sigma $-products of the real line.Fund. Math. 107 (1980), 135–143. MR 0584666, 10.4064/fm-107-2-135-143 | 
| Reference: | [2] A. V.  Arkhangel’skii: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1144519 | 
| Reference: | [3] M.  Bell: Generalized dyadic spaces.Fund. Math. CXXV (1985), 47–58. Zbl 0589.54019, MR 0813988, 10.4064/fm-125-1-47-58 | 
| Reference: | [4] M. Bell: Tightness in polyadic spaces.Topology Proc. 25 (2000), 63–74. Zbl 1009.54031, MR 1875583 | 
| Reference: | [5] M. Bell: Polyadic spaces of countable tightness.Topology and its Applications 123 (2002), 401–407. Zbl 1008.54015, MR 1924040, 10.1016/S0166-8641(01)00206-1 | 
| Reference: | [6] Y.  Benyamini, M.  E. Rudin and M. Wage: Continuous images of weakly compact subsets of Banach spaces.Pacific J. Math. 70 (1977), 309–324. MR 0625889, 10.2140/pjm.1977.70.309 | 
| Reference: | [7] H.  Corson: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785–796. Zbl 0095.37302, MR 0107222, 10.2307/2372929 | 
| Reference: | [8] J. Gerlits: On a generalization of dyadicity.Studia Sci. Math. Hungar. 13 (1978), 1–17. Zbl 0475.54012, MR 0630375 | 
| Reference: | [9] S. P. Gul’ko: On properties of subsets of $\Sigma $-products.Dokl. Acad. Nauk SSSR 237 (1977). MR 0461410 | 
| Reference: | [10] O.  Kalenda: Embedding of the ordinal segment $[0, \omega _1]$ into continuous images of Valdivia compacta.Comment. Math. Univ. Carolin. 40 (1999), 777–783. Zbl 1009.54017, MR 1756552 | 
| Reference: | [11] O.  Kalenda: Valdivia compact spaces in topology and Banach space theory.Extracta Math. 15 (2000), 1–85. Zbl 0983.46021, MR 1792980 | 
| Reference: | [12] A.  Kombarov: On the normality of $\Sigma _m$-products.Dokl. Akad. Nauk SSSR 211 (1973). MR 0328861 | 
| Reference: | [13] A.  Kombarov and V.  Malyhin: On $\Sigma $-products.Dokl. Akad. Nauk SSSR 213 (1973). MR 0339073 | 
| Reference: | [14] S.  Mardesic: On covering dimension and inverse limits of compact spaces.Illinois J. Math. 4 (1960), 278–291. Zbl 0094.16902, MR 0116306, 10.1215/ijm/1255455869 | 
| Reference: | [15] S.  Mrowka: Mazur theorem and $m$-adic spaces.Bull. Acad. Pol. Sci. XVIII (1970), 299–305. Zbl 0194.54302, MR 0264613 | 
| Reference: | [16] N.  Noble: Products with closed projections. II.Trans. Amer. Math. Soc. 160 (1971), 169–183. Zbl 0233.54004, MR 0283749, 10.1090/S0002-9947-1971-0283749-X | 
| Reference: | [17] G.  Plebanek: Compact spaces that result from adequate families of sets.Topology Appl. 65 (1995), 257–270. MR 1357868, 10.1016/0166-8641(95)00006-3 | 
| Reference: | [18] R.  Pol: On weak and pointwise topology in function spaces.University of Warsaw preprint No. 4184, Warsaw, 1984. | 
| Reference: | [19] M.  Talagrand: Espaces de Banach faiblement $K$-analytiques.Ann. Math. 110 (1979), 407–438. MR 0554378, 10.2307/1971232 | 
| . |