[1] A.  Arhangel’skiĭ: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. 40 (1981), 163–200.
[4] S. Dolecki: 
Active boundaries of upper semi-continuous and compactoid relations closed and inductively perfect maps. Rostock Math. Coll. 54 (2000), 51–68. 
MR 1820118[8] J. Gerlits and Z. Nagy: 
On Fréchet spaces. Rend. Circ. Mat. Palermo (2) 18 (1988), 51–71. 
MR 0958724[9] G. Gruenhage: 
A note on the product of Fréchet spaces. Topology Proc. 3 (1979), 109–115. 
MR 0540482 | 
Zbl 0427.54017[11] I. Labuda: Compactoidness in topological spaces. (to appear).
[12] V. I. Malyhin: 
On countable spaces having no bicompactification of countable tightness. Dokl. Akad. Nauk SSR 206 (6) (1972), 1407–1411. 
MR 0320981 | 
Zbl 0263.54015[14] F. Mynard: 
Coreflectively modified continuous duality applied to classical product theorems. Applied Gen. Top. 2 (2001), 119–154. 
MR 1890032 | 
Zbl 1007.54008[16] T. Nogura: 
Product of Fréchet spaces. General Topology and its relations to modern analysis and algebra VI. Proc. Prague Topological Sympos. 86 (1988), 371–378. 
MR 0952623[20] J. Novák: 
Concerning the topological product of two Fréchet spaces. General Topology and its relations to modern analysis and algebra IV, Proc. Fourth Prague Topological Sympos., 1977, pp. 342–343. 
MR 0474222[22] P. Simon: 
A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolin. 21 (1980), 749–753. 
MR 0597764 | 
Zbl 0466.54022[24] S. Todorcevic: 
Some applications of S and L combinatorics. Annals New York Acad. Sci., 1991, pp. 130–167. 
MR 1277886