Previous |  Up |  Next

Article

Title: A nontrivial solution for Neumann noncoercive hemivariational inequalities (English)
Author: Halidias, Nikolaos
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 1065-1075
Summary lang: English
.
Category: math
.
Summary: In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals. (English)
Keyword: noncoercive hemivariational inequality
Keyword: critical point theory
Keyword: nontrivial solution
Keyword: locally Lipschitz functionals
MSC: 35J20
MSC: 35J85
MSC: 49J40
idZBL: Zbl 1080.35013
idMR: MR2100014
.
Date available: 2009-09-24T11:20:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127951
.
Reference: [1] K. C.  Chang: Variational methods for non-differentiable functionals and their applications to partial differential equations.J.  Math. Anal. Appl. 80 (1981), 102–129. Zbl 0487.49027, MR 0614246, 10.1016/0022-247X(81)90095-0
Reference: [2] F.  Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590
Reference: [3] D. G. Costa and J. V.  Goncalves: Critical point theory for nondifferentiable functionals and applications.J. Math. Anal. Appl. 153 (1990), 470–485. MR 1080660, 10.1016/0022-247X(90)90226-6
Reference: [4] D. G.  De Figueiredo: Lectures on the Ekeland Variational Principle with Applications and Detours.Tata Institute of Fundamental Research, Springer, Bombay, 1989. Zbl 0688.49011, MR 1019559
Reference: [5] L.  Gasinski and N. S.  Papageorgiou: Nonlinear hemivariational inequalities at resonance.J.  Math. Anal. Appl. 244 (2000), 200–213. MR 1746797, 10.1006/jmaa.1999.6701
Reference: [6] D.  Goeleven, D.  Motreanu and P. D.  Panagiotopoulos: Multiple solutions for a class of eigenvalue problems in hemivariational inequalities.Nonlinear Anal. 29 (1997), 9–26. MR 1447566, 10.1016/S0362-546X(96)00039-9
Reference: [7] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume  I: Theory.Kluwer Academic Publishers, Dordrecht, 1997. MR 1485775
Reference: [8] S.  Hu and N. S.  Papageorgiou: Handbook of Multivalued Analysis. Volume II: Applications.Kluwer Academic Publishers, Dordrecht, 2000. MR 1741926
Reference: [9] N.  Kenmochi: Pseudomonotone operators and nonlinear elliptic boundary value problems.J.  Math. Soc. Japan 27 (1975), 121–149. Zbl 0292.35034, MR 0372419, 10.2969/jmsj/02710121
Reference: [10] P. D.  Panagiotopoulos: Hemivariational Inequalities and Their Applications.Birkhäuser-Verlag, Boston, 1998. MR 0957088
Reference: [11] P. D.  Panagiotopoulos: Hemivariational Inequalities. Applications in Mechanics and Engineering.Springer-Verlag, Berlin, 1993. Zbl 0826.73002, MR 1385670
.

Files

Files Size Format View
CzechMathJ_54-2004-4_19.pdf 319.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo