Article
Keywords:
weights; integral operators
Summary:
In this paper we study integral operators of the form \[ Tf(x)=\int | x-a_1y|^{-\alpha _1}\dots | x-a_my|^{-\alpha _m}f(y)\mathrm{d}y, \] $\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$  boundedness for them, and a weighted $(1,1)$  inequality for weights  $w$ in  $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb R^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _{{\mathrm BMO}}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb R^n)$.
References:
                        
[2] J. Duoandikoetxea: Análisis de Fourier. Ediciones de la Universidad Autónoma de Madrid, Editorial Siglo  XXI, 1990.
[3] T. Godoy and M. Urciuolo: 
About the $L^p$  boundedness of some integral operators. Revista de la UMA 38 (1993), 192–195. 
MR 1276023[7] F.  Ricci and P.  Sjögren: 
Two parameter maximal functions in the Heisenberg group. Math.  Z. 199 (1988), 565–575. 
MR 0968322