Previous |  Up |  Next

Article

Title: Implicative hyper $K$-algebras (English)
Author: Zahedi, M. M.
Author: Saeid, A. Borumand
Author: Borzooei, R. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 439-453
Summary lang: English
.
Category: math
.
Summary: In this note we first define the notions of (weak, strong) implicative hyper $K$-algebras. Then we show by examples that these notions are different. After that we state and prove some theorems which determine the relationship between these notions and (weak) hyper $K$-ideals. Also we obtain some relations between these notions and (weak) implicative hyper $K$-ideals. Finally, we study the implicative hyper $K$-algebras of order 3, in particular we obtain a relationship between the positive implicative hyper $K$-algebras and (weak, strong) implicative hyper $K$-algebras under a simple condition. (English)
Keyword: hyper $K$-algebra
Keyword: hyper $K$-ideal
Keyword: (weak
Keyword: strong) implicative hyper $K$-algebras
Keyword: (weak) implicative hyper $K$-ideal
MSC: 03G25
MSC: 06F35
idZBL: Zbl 1081.06030
idMR: MR2137150
.
Date available: 2009-09-24T11:24:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127990
.
Reference: [1] A.  Borumand Saeid, R. A.  Borzooei and M. M.  Zahedi: (Weak) implicative hyper $K$-ideals.Bull. Korean Math. Soc. 40 (2003), 123–137. MR 1958230, 10.4134/BKMS.2003.40.1.123
Reference: [2] R. A.  Borzooei, P.  Corsini and M. M.  Zahedi: Some kinds of positive implicative hyper $K$-ideals.Journal of Discrete Mathematical Sciences and Cryptography 6 (2003), 97–108. MR 1988047, 10.1080/09720529.2003.10697966
Reference: [3] R. A.  Borzooei, A.  Hasankhani, M. M.  Zahedi and Y. B.  Jun: On hyper $K$-algebras.Math. Japon. 52 (2000), 113–121. MR 1783185
Reference: [4] R. A.  Borzooei and M. M.  Zahedi: Positive implicative hyper $K$-ideals.Scientiae Mathematicae Japonicae 53 (2001), 525–533. MR 1835922
Reference: [5] Y.  Imai and K.  Iseki: On axiom systems of propositional calculi.XIV Proc. Japan Academy 42 (1966), 19–22. MR 0195704
Reference: [6] Y. B.  Jun, M. M.  Zahedi, X. L.  Xin and R. A.  Borzooei: On hyper $BCK$-algebras.Ital. J. Pure Appl. Math. (2000), 127–136. MR 1793750
Reference: [7] F.  Marty: Sur une generalization de la notion de groups.8th Congress Math. Scandinaves, Stockholm, 1934, pp. 45–49.
Reference: [8] J.  Meng and Y. B.  Jun: $BCK$-Algebras.Kyung Moonsa, Seoul, 1994. MR 1297121
Reference: [9] D.  Mundici: $MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras.Math. Japon. 31 (1986), 889–894. Zbl 0633.03066, MR 0870978
Reference: [10] M. M.  Zahedi, R. A.  Borzooei and H.  Rezaei: Some classification of hyper $K$-algebras of order  3.Scientiae Mathematicae Japonicae 53 (2001), 133–142. MR 1821608
Reference: [11] M. M.  Zahedi, R. A.  Borzooei, Y. B.  Jun and A.  Hasankhani: Some results on hyper $K$-algebra.Scientiae Mathematicae 3 (2000), 53–59. MR 1758830
.

Files

Files Size Format View
CzechMathJ_55-2005-2_14.pdf 333.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo