Previous |  Up |  Next

Article

Title: Strong projectability of lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 957-973
Summary lang: English
.
Category: math
.
Summary: In this paper we prove that the lateral completion of a projectable lattice ordered group is strongly projectable. Further, we deal with some properties of Specker lattice ordered groups which are related to lateral completeness and strong projectability. (English)
Keyword: Lattice ordered group
Keyword: projectability
Keyword: strong projectability
Keyword: lateral completion
Keyword: orthocompletion
Keyword: Specker lattice ordered group
MSC: 06F20
idZBL: Zbl 1081.06023
idMR: MR2184377
.
Date available: 2009-09-24T11:29:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128038
.
Reference: [1] S. J.  Bernau: The lateral completion of an arbitrary lattice group.J.  Austral. Math. Soc. 19 (1975), 263–289. Zbl 0314.06011, MR 0384640, 10.1017/S1446788700031463
Reference: [2] S. J.  Bernau: Lateral and Dedekind completion of archimedean lattice groups.J.  London Math. Soc. 12 (1976), 320–322. Zbl 0333.06008, MR 0401579, 10.1112/jlms/s2-12.3.320
Reference: [3] R. D.  Bleier: The ${\mathrm SP}$-hull of a lattice-ordered group.Canadian J.  Math. 26 (1974), 866–878. MR 0345891, 10.4153/CJM-1974-081-x
Reference: [4] R. D.  Bleier: The orthocompletion of a lattice-ordered group.Indagationes Math. 38 (1976), 1–7. Zbl 0329.06013, MR 0401581, 10.1016/1385-7258(76)90000-7
Reference: [5] D.  Byrd and T. J.  Lloyd: A note on lateral completion in lattice ordered groups.J.  London Math. Soc. 1 (1969), 358–362. MR 0249339, 10.1112/jlms/s2-1.1.358
Reference: [6] D. A.  Chambless: Representation of the projectable and strongly projectable hulls of a lattice ordered group.Proc. Amer. Math. Soc. 19 (1975), 263–289. MR 0295990
Reference: [7] P. F.  Conrad: Lateral completion of lattice ordered groups.Proc. London Math. Soc. 19 (1969), 444–480. MR 0244125, 10.1112/plms/s3-19.3.444
Reference: [8] P. F.  Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [9] P. F.  Conrad: The hulls of representable $\ell $-groups and $f$-rings.J.  Austral. Math. Soc. 16 (1973), 385–415. MR 0344173, 10.1017/S1446788700015391
Reference: [10] P. F.  Conrad: Epi-Archimedean $\ell $-groups.Czechoslovak Math.  J. 24 (1974), 192–218. MR 0347701
Reference: [11] P. F.  Conrad and M. R.  Darnel: Generalized Boolean algebras in lattice-ordered groups.Order 14 (1998), 295–319. MR 1644504, 10.1023/A:1006075129584
Reference: [12] M. R.  Darnel: The Theory of Lattice Ordered Groups.Marcel Dekker, New York-Basel, 1995. MR 1304052
Reference: [13] J.  Jakubík: Representations and extensions of $\ell $-groups.Czechoslovak Math.  J. 13 (1963), 267–282. (Russian)
Reference: [14] J.  Jakubík: Lateral and Dedekind completions of strongly projectable lattice ordered groups.Czechoslovak Math.  J 47 (1997), 511–523. MR 1461430, 10.1023/A:1022419703077
Reference: [15] J.  Jakubík: Orthogonal hull of a strongly projectable lattice ordered group.Czechoslovak Math.  J. 28 (1978), 484–504. MR 0505957
Reference: [17] J.  Jakubík: Torsion classes of Specker lattice ordered groups.Czechoslovak Math.  J. 52 (2002), 469–482. MR 1923254, 10.1023/A:1021711326115
Reference: [18] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen.Čas. pěst. mat. 84 (1959), 53–63. MR 0104740
Reference: [19] K.  Keimel: Représentation de groupes et d’anneaux réticulés par des sections dans des faisceaux.PhD. Thesis, Université de Paris, 1970. Zbl 0249.06002
Reference: [20] G. Ya.  Rotkovich: On some kinds of completeness in archimedean lattice ordered groups.Funkc. anal. 9 (1977), 138–143. (Russian)
Reference: [21] R.  Sikorski: Boolean Algebras.Second Edition, Springer-Verlag, Berlin, 1964. Zbl 0123.01303, MR 0126393
Reference: [22] E. C.  Smith Jr. and A.  Tarski: Higher degrees of distributivity and completeness in Boolean algebras.Trans. Amer. Math. Soc. 84 (1957), 230–257. MR 0084466, 10.1090/S0002-9947-1957-0084466-4
.

Files

Files Size Format View
CzechMathJ_55-2005-4_13.pdf 348.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo