Previous |  Up |  Next

Article

Keywords:
distributions; generalized distributions; multipole series
Summary:
In this paper we use a duality method to introduce a new space of generalized distributions. This method is exactly the same introduced by Schwartz for the distribution theory. Our space of generalized distributions contains all the Schwartz distributions and all the multipole series of physicists and is, in a certain sense, the smallest space containing all these series.
References:
[1] N. Bourbaki: Eléments de mathématique, Livre V. Espaces vectoriels topologiques. Hermann, Paris, 1953–1955.
[2] J. Dieudonné and L. Schwartz: La dualité dans les espaces F et LF. Annales de l’Institut Fourier I (1949), 61–101. MR 0038553
[3] P. Dirac: The physical interpretation of the quantum dynamics. Proc. of the Royal Society, London, section A 113 (1926–1927), 621–641.
[4] L. Ehrenpreis: Analytic functions and the Fourier transform of distributions I. Ann. of Maths. 63 (1956), 129–159. DOI 10.2307/1969993 | MR 0076297
[5] M. Gevrey: Sur la nature analytique des solutions des équations aux dérivées partielles. Ann. Ec. Norm. Sup., Paris 35 (1918), 129–190. MR 1509208
[6] A. Grothendieck: Topological vector spaces. Gordon and Breach, London, 1973. MR 0372565 | Zbl 0275.46001
[7] I. M. Guelfand and G. E. Chilov: Les Distributions, volume 2. Dunod, Paris, 1964. MR 0132390
[8] Heaviside: On operators in Mathematical Physics I. Proc. of the Royal Society, London 52 (1893), 504–529. DOI 10.1098/rspl.1892.0093
[9] Heaviside: On operators in Mathematical Physics II. Proc. of the Royal Society, London 54 (1894), 105–143. DOI 10.1098/rspl.1893.0059
[10] H. Komatsu: Ultradistributions and hyperfunctions. In “Hyperfunctions and Pseudo-Differential Equations", Proceedings of a Conference at Katata, Lectures Notes in Math. 287, Springer, 1973. MR 0407596 | Zbl 0264.46036
[11] J. L. Lions and E. Magenes: Problèmes aux limites non homogènes et applications, vol. 3. Dunod, Paris, 1970. MR 0291887
[12] A. S. Menezes: Sobre uma construção axiomática da teoria das ultradistribuições na recta e alguns dos seus possíveis modelos. XXVII Congresso Luso-Espanhol para o progresso das ciências, Bilbao (1964).
[13] J. S. Oliveira: Sobre certos espaços de ultradistribuições e uma noção generalizada de produto multiplicativo. CMAF, Textos e notas 29, Lisboa, 1983.
[14] L. Ribeiro: Teoria axiomática das ultradistribuições e ultradistribuições de suporte compacto. IST, Lisboa, 1987.
[15] L. Ribeiro: Sobre uma noção de limite na teoria das ultradistribuições. IST, Lisboa, 1990.
[16] L. Schwartz: Théorie des Distributions. Hermann, Paris, 1966. MR 0209834 | Zbl 0149.09501
[17] J. S. Silva: Les fonctions analytiques comme ultradistributions dans le calcul opérationnel. Math. Annalen 136 (1958), 58–96. DOI 10.1007/BF01350287 | MR 0105615 | Zbl 0195.41302
[18] J. S. Silva: Les séries de multipôles des physiciens et la théorie des ultradistributions. Math. Annalen 174 (1967), 109–142. DOI 10.1007/BF01360813 | MR 0217597 | Zbl 0152.13102
[19] F. S. Viegas: Limites indutivos e projectivos. IST, Lisboa (1987).
Partner of
EuDML logo