Previous |  Up |  Next

Article

Title: Variational measures related to local systems and the Ward property of $\scr P$-adic path bases (English)
Author: Bongiorno, D.
Author: Di Piazza, Luisa
Author: Skvortsov, V. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 559-578
Summary lang: English
.
Category: math
.
Summary: Some properties of absolutely continuous variational measures associated with local systems of sets are established. The classes of functions generating such measures are described. It is shown by constructing an example that there exists a $\mathcal{P}$-adic path system that defines a differentiation basis which does not possess Ward property. (English)
Keyword: local system
Keyword: ${\mathcal{P}}$-adic system
Keyword: differentiation basis
Keyword: variational measure
Keyword: Ward property
MSC: 26A39
MSC: 26A42
MSC: 26A45
MSC: 28A12
idZBL: Zbl 1164.26316
idMR: MR2291756
.
Date available: 2009-09-24T11:35:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128086
.
Reference: [1] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtein: Multiplicative systems of functions and harmonic analysis on zero-dimensional groups.Baku (1981). (Russian) MR 0679132
Reference: [2] E. S. Bajgogin: On a dyadic Perron integral.Vestnik Moskov. Univ. Ser. I Mat. Mekh. 48 (1993), 25–28. MR 1274657
Reference: [3] B. Bongiorno, L. Di Piazza and D. Preiss: Infinite variation and derivatives in ${R}^n$.J. Math. Anal. Appl. 224 (1998), 22–33. MR 1632942, 10.1006/jmaa.1998.5982
Reference: [4] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: A new full descriptive characterization of the Denjoy-Perron integral.Real Anal. Exchange. 21 (1995–96), 656–663. MR 1407278
Reference: [5] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On variational measures related to some bases.J. Math. Anal. Appl. 250 (2000), 533–547. MR 1786079, 10.1006/jmaa.2000.6983
Reference: [6] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: On dyadic integrals and some other integrals associated with local systems.J. Math. Anal. Appl. 271 (2002), 506–524. MR 1923649, 10.1016/S0022-247X(02)00146-4
Reference: [7] B. Bongiorno, L. Di Piazza and V. A. Skvortsov: The Ward property for a ${\mathcal{P}}$-adic basis and the ${\mathcal{P}}$-adic integral.J. Math. Anal. Appl. 285 (2003), 578–592. MR 2005142, 10.1016/S0022-247X(03)00426-8
Reference: [8] B. Bongiorno, W. Pfeffer and B. S. Thomson: A full descriptive definition of the gage integral.Canad. Math. Bull. 39 (1996), 390–401. MR 1426684, 10.4153/CMB-1996-047-x
Reference: [9] Z. Buczolich and W. Pfeffer: When absolutely continuous implies $\sigma $-finite.Acad. Roy. Belg. Bull. Cl. Sci. 8 (1997), 155–160. MR 1625113
Reference: [10] Z. Buczolich and W. Pfeffer: On absolute continuity.J. Math. Anal. Appl. 222 (1998), 64–78. MR 1623859, 10.1006/jmaa.1997.5804
Reference: [11] W. Cai-shi and D. Chuan-Song: An integral involving Thomson’s local systems.Real Anal. Exchange 19 (1993/94), 248–253. MR 1268851
Reference: [12] L. Di Piazza: Variational measures in the theory of the integration in $R^m$.Czechoslovak Math. J. 51 (2001), 95–110. MR 1814635, 10.1023/A:1013705821657
Reference: [13] V. Ene: Real functions-Current Topics.Lecture Notes in Math., Vol. 1603, Springer-Verlag, 1995. Zbl 0866.26002, MR 1369575
Reference: [14] V. Ene: Thomson’s variational measures.Real Anal. Exchange 24 (1998/99), 523–565. MR 1704732
Reference: [15] Sh. Fu: Path integral: an inversion of path derivatives.Real Anal. Exchange 20 (1994–95), 340–346. MR 1313697, 10.2307/44152493
Reference: [16] B. Golubov, A. Efimov and V. A. Skvortsov: Walsh series and transforms-Theory and applications.Kluwer Academic Publishers, 1991. MR 1155844
Reference: [17] R. A. Gordon: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral.Real Anal. Exchange 16 (1990–91), 154–168. MR 1087481
Reference: [18] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics., Vol. 4, AMS, Providence, 1994. Zbl 0807.26004, MR 1288751
Reference: [19] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (1995), 79–106. MR 1314532
Reference: [20] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$-dimension with respect to $\alpha $-regular intervals.Results Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075
Reference: [21] Tuo-Yeong Lee: A full descriptive definition of the Henstok-Kurzwail integral in the Euclidean space.Proceedings of London Math. Society 87 (2003), 677–700. MR 2005879, 10.1112/S0024611503014163
Reference: [22] K. M. Ostaszewski: Henstock integration in the plane.Memoirs of the AMS, Providence Vol. 353, 1986. Zbl 0596.26005, MR 0856159
Reference: [23] W. F. Pfeffer: The Riemann Approach to Integration.Cambridge Univ. Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404
Reference: [24] W. F. Pfeffer: The Lebesgue and Denjoy-Perron integrals from a descriptive point of view.Ricerche di Matematica Vol. 48, 1999. Zbl 0951.26005, MR 1760817
Reference: [25] S. Saks: Theory of the integral.Dover, New York, 1964. MR 0167578
Reference: [26] V. A. Skvortsov: Variation and variational measures in integration theory and some applications.J. Math. Sci. (New York) 91 (1998), 3293–3322. MR 1657287, 10.1007/BF02433805
Reference: [27] V. A. Skvortsov and M. P. Koroleva: Series in multiplicative systems convergent to Denjoy-integrable functions.Mat. sb. 186 (1995), 129–150. MR 1376095
Reference: [28] V. A. Skvortsov and F. Tulone: Generalized Henstock integrals in the theory of series with respect to multiplicative system.Vestnik Moskov. Gos. Univ. Ser. Mat. Mekh. 4 (2004), 7–11. MR 2082794
Reference: [29] V. A. Skvortsov and Yu. A. Zherebyov: On classes of functions generating absolutely continuous variational measures.Real. Anal. Exchange 30 (2004–2005), 361–372. MR 2127542
Reference: [30] V. A. Skvortsov and Yu. A. Zherebyov: On Radon-Nikodim derivative for the variational measure constructed by dyadic basis.Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2004), 6–12 (Engl. transl. Moscow Univ. Math. Bull. 59 (2004), 5–11). MR 2129296
Reference: [31] B. S. Thomson: Real functions. Lecture Notes in Math., Vol. 1170, Springer-Verlag.1985. MR 0818744
Reference: [32] B. S. Thomson: Derivation bases on the real line.Real Anal. Exchange 8 (1982/83), 67–207 and 278–442.
Reference: [33] B. S. Thomson: Some property of variational measures.Real Anal. Exchange 24 (1998/99), 845–853. MR 1704758
Reference: [34] F. Tulone: On the Ward Theorem for ${\mathcal{P}}$-adic path bases associated with a bounded sequence ${\mathcal{P}}$.Math. Bohem. 129 (2004), 313–323. MR 2092717
.

Files

Files Size Format View
CzechMathJ_56-2006-2_21.pdf 405.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo