Article
Keywords:
ordered locally convex space; order convergence; marginals
Summary:
Suppose $E$ is an ordered locally convex space, $X_{1} $ and $X_{2} $ Hausdorff completely regular spaces and $Q$ a uniformly bounded, convex and closed subset of $ M_{t}^{+}(X_{1} \times X_{2}, E) $. For $ i=1,2 $, let $ \mu _{i} \in M_{t}^{+}(X_{i}, E) $. Then, under some topological and order conditions on $E$, necessary and sufficient conditions are established for the existence of an element in $Q$, having marginals $ \mu _{1} $ and $ \mu _{2}$.
References:
[1] C. D. Aliprantis and O. Burkinshaw:
Positive Operators. Academic Press, 1985.
MR 0809372
[2] J. Diestel and J. J. Uhl:
Vector Measures. Amer. Math. Soc. Surveys, Vol. 15, Amer. Math. Soc., 1977.
MR 0453964
[3] L. Drewnowski:
Topological rings of sets, continuous set functions, integration I, II. Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 20 (1972), 269–276.
MR 0306432
[4] E. Hewitt and K. Stromberg:
Real and Abstract Analysis. Springer-Verlag, 1965.
MR 0367121
[6] Hoffmann-Jorgensen:
Probability in Banach spaces. vol. 598, Lecture Notes in Math., Springer-Verlag, 1977, pp. 1–186.
MR 0461610
[8] S. S. Khurana:
Extension and regularity of group-valued Baire measures. Bull. Acad. Polon. Sc., Ser. Math. Astro. Phys. 22 (1974), 891–895.
MR 0393412 |
Zbl 0275.28012
[10] I. Kluvanek and G. Knowles:
Vector Measures and Control Systems. North-Holland, 1976.
MR 0499068
[12] Peter Meyer-Nieberg:
Banach Lattices. Springer-Verlag, 1991.
MR 1128093
[13] H. H. Schaefer:
Topological Vector Spaces. Springer Verlag, 1986.
MR 0342978
[15] V. S. Varadarajan:
Measures on topological spaces. Amer. Math. Soc. Transl. 48 (1965), 161–228.
DOI 10.1090/trans2/048/10