[1] P. Erdős, M. S. Jacobson and J. Lehel: 
Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.). Graph Theory, Combinatorics and Applications, Vol. 1, John Wiley & Sons, New York, 1991, pp. 439–449. 
MR 1170797[2] Elaine Eschen and J. B. Niu: 
On potentially $K_4-e$-graphic. Australasian J. Combinatorics 29 (2004), 59–65. 
MR 2037333[3] R. J. Gould, M. S. Jacobson and J. Lehel: 
Potentially $G$-graphical degree sequences, in: Y. Alavi et al., (Eds.). Combinatorics, Graph Theory, and Algorithms, Vol. 1, New Issues Press, Kalamazoo Michigan, 1999, pp. 451–460. 
MR 1985076[4] A. E. Kézdy and J. Lehel: 
Degree sequences of graphs with prescribed clique size, in: Y. Alavi et al., (Eds.). Combinatorics, Graph Theory, and Algorithms, Vol. 2, New Issues Press, Kalamazoo Michigan, 1999, pp. 535–544. 
MR 1985084[8] J. S. Li, Z. X. Song and R. Luo: 
The Erdős-Jacobson-Lehel conjecture on potentially $P_k$-graphic sequences is true. Science in China, Ser. A 41 (1998), 510–520. 
DOI 10.1007/BF02879940 | 
MR 1663175[9] J. S. Li and J. H. Yin: 
A variation of an extremal theorem due to Woodall. Southeast Asian Bulletin of Mathematics 25 (2001), 427–434. 
DOI 10.1007/s100120100006 | 
MR 1933948[10] R. Luo: 
On potentially $C_k$-graphic sequences. Ars Combinatoria 64 (2002), 301–318. 
MR 1914218[11] R. Luo and Morgan Warner: 
On potentially $K_k$-graphic sequences. Ars Combinatoria 75 (2005), 233–239. 
MR 2133225[12] A. R. Rao: The clique number of a graph with given degree sequence. Proc. Symposium on Graph Theory, A. R. Rao ed., MacMillan and Co. India Ltd., I.S.I. Lecture Notes Series 4 (1979), 251–267.
[13] A. R. Rao: An Erdős-Gallai type result on the clique number of a realization of a degree sequence, unpublished. 
[15] J. H. Yin and J. S. Li: 
Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size. Discrete Math. 301 (2005), 218–227. 
DOI 10.1016/j.disc.2005.03.028 | 
MR 2171314