Previous |  Up |  Next

Article

Keywords:
matrix refinement equation; continuity; smoothness; iteration; multi-wavelet
Summary:
In this paper we give some criteria for the existence of compactly supported $C^{k+\alpha }$-solutions ($k$ is an integer and $0\le \alpha <1$) of matrix refinement equations. Several examples are presented to illustrate the general theory.
References:
[1] A. S. Cavaretta, W. Dahmen and C. A. Micchelli: Stationary subdivision. Memoirs of Amer. Math. Soc., Vol. 93, 1991. MR 1079033
[2] A. Cohen, I. Daubechies and G. Plonka: Regularity of refinable function vectors. J. Fourier Anal. Appl. 3 (1997), 295–324. DOI 10.1007/BF02649113 | MR 1448340
[3] A. Cohen, K. Gröchenig and L. F. Villemoes: Regularity of multivariate refinable functions. Constr. Approx. 15 (1999), 241–255. DOI 10.1007/s003659900106 | MR 1668921
[4] D. Colella and C. Heil: Characterizations of scaling functions: Continuous solutions. SIAM J. Matrix Anal. Appl. 15 (1994), 496–518. DOI 10.1137/S0895479892225336 | MR 1266600
[5] C. Heil and D. Colella: Matrix refinement equations: Existence and uniqueness. J. Fourier Anal. Appl. 2 (1996), 363–377. MR 1395770
[6] I. Daubechies and J. Lagarias: Two-scale difference equation I. Existence and global regularity of solutions SIAM J. Math. Anal. 22 (1991), 1388–1410. DOI 10.1137/0522089 | MR 1112515
[7] I. Daubechies and J. Lagarias: Two-scale difference equation II. Local regularity, infinite products of matrices, and fractals. SIAM J. Math. Anal. 22 (1991), 1388–1410. MR 1112515
[8] T. A. Hogan: A note on matrix refinement equation. SIAM J. Math. Anal. 29 4 (1998), 849–854. DOI 10.1137/S003614109630135X | MR 1617730
[9] R. Q. Jia, K. S. Lau and J. R. Wang: $L_p$ solutions of refinement equations. J. Fourier Anal. and Appli. 7 (2001), 143–167. DOI 10.1007/BF02510421 | MR 1817673
[10] K. S. Lau and J. R. Wang: Characterization of $L^p$-solutions for the two-scale dilation equations. SIAM J. Math. Anal. 26 (1995), 1018–1046. DOI 10.1137/S0036141092238771 | MR 1338372
[11] P. Massopust, D. Ruch and P. Van Fleet: On the support properties of scaling vectors. Appl. Comp. Harmonic Anal. 3 (1996), 229–238. DOI 10.1006/acha.1996.0018 | MR 1400081
[12] C. A. Micchelli and H. Prautzsch: Uniform refinement of curves Linear Algebra and Its Applications. 114/115 (1989), 841–870. MR 0986909
[13] G. Plonka and V. Strela: From wavelets to multiwavelets. Mathematical methods for curves and surfaces, 2 (Lillehammer) (1997), 375–399. MR 1640571
[14] Z. W. Shen: Refinable function vectors. SIAM J. Math. Anal. 29 (1998), 235–250. DOI 10.1137/S0036141096302688 | MR 1617183 | Zbl 0913.42028
[15] D. X. Zhou: Existence of multiple refinable distributions. Michigan Math. J. 44 (1997), 317–329. DOI 10.1307/mmj/1029005707 | MR 1460417 | Zbl 0901.42022
Partner of
EuDML logo