Title:
|
On a sub-supersolution method for the prescribed mean curvature problem (English) |
Author:
|
Le, Vy Khoi |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
541-560 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established. (English) |
Keyword:
|
variational inequality |
Keyword:
|
sub-supersolution |
Keyword:
|
enclosure |
Keyword:
|
extremal solution |
Keyword:
|
prescribed mean curvature problem |
MSC:
|
35J25 |
MSC:
|
35J60 |
MSC:
|
35J85 |
MSC:
|
47H30 |
MSC:
|
47J20 |
MSC:
|
53A10 |
idZBL:
|
Zbl 1174.35052 |
idMR:
|
MR2411108 |
. |
Date available:
|
2009-09-24T11:56:50Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128276 |
. |
Reference:
|
[1] R. Acar and C. Vogel: Analysis of bounded variation penalty methods for ill-posed problems.Inverse Problems 10 (1994), 1217–1229. MR 1306801, 10.1088/0266-5611/10/6/003 |
Reference:
|
[2] L. Ambrosio, S. Mortola and V. Tortorelli: Functionals with linear growth defined on vector valued BV functions.J. Math. Pures Appl. 70 (1991), 269–323. MR 1113814 |
Reference:
|
[3] G. Anzellotti and M. Giaquinta: ${BV}$ functions and traces.Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21. MR 0555952 |
Reference:
|
[4] F. Atkinson, L. Peletier and J. Serrin: Ground states for the prescribed mean curvature equation: the supercritical case.Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ., vol. 12, 1988, pp. 51–74. MR 0956058 |
Reference:
|
[5] E. Bombieri and E. Giusti: Local estimates for the gradient of non-parametric surfaces of prescribed mean curvature.Comm. Pure Appl. Math. 26 (1973), 381–394. MR 0344977, 10.1002/cpa.3160260306 |
Reference:
|
[6] G. Buttazzo: Semicontinuity, relaxation and integral representation in the calculus of variations.Pitman Research Notes in Mathematics, vol. 207, Longman Scientific & Technical, Harlow, 1989. Zbl 0669.49005, MR 1020296 |
Reference:
|
[7] S. Carl and V. K. Le: Sub-supersolution method for quasilinear parabolic variational inequalities.J. Math. Anal. Appl. 293 (2004), 269–284. MR 2052546, 10.1016/j.jmaa.2004.01.005 |
Reference:
|
[8] S. Carl, V. K. Le and D. Motreanu: Existence and comparison results for quasilinear evolution hemivariational inequalities.Electron. J. Differential Equations 57 (2004), 1–17. MR 2047413 |
Reference:
|
[9] S. Carl, V. K. Le and D. Motreanu: The sub-supersolution method and extremal solutions for quasilinear hemivariational inequalities.Differential Integral Equations 17 (2004), 165–178. MR 2035501 |
Reference:
|
[10] S. Carl, V. K. Le and D. Motreanu: Existence and comparison principles for general quasilinear variational-hemivariational inequalities.J. Math. Anal. Appl. 302 (2005), 65–83. MR 2106547, 10.1016/j.jmaa.2004.08.011 |
Reference:
|
[11] M. Carriero, A. Leaci and E. Pascali: On the semicontinuity and the relaxation for integrals with respect to the Lebesgue measure added to integrals with respect to a Radon measure.Ann. Mat. Pura Appl. 149 (1987), 1–21. MR 0932773, 10.1007/BF01773922 |
Reference:
|
[12] M. Carriero, Dal Maso, A. Leaci and E. Pascali: Relaxation of the nonparametric Plateau problem with an obstacle.J. Math. Pures Appl. 67 (1988), 359–396. MR 0978576 |
Reference:
|
[13] C. V. Coffman and W. K. Ziemer: A prescribed mean curvature problem on domains without radial symmetry.SIAM J. Math. Anal. 22 (1991), 982–990. MR 1112060, 10.1137/0522063 |
Reference:
|
[14] M. Conti and F. Gazzola: Existence of ground states and free-boundary problems for the prescribed mean curvature equation.Adv. Differential Equations 7 (2002), 667–694. MR 1894862 |
Reference:
|
[15] G. Dal-Maso: An introduction to $\Gamma $-convergence.Birkhäuser, 1993. Zbl 0816.49001, MR 1201152 |
Reference:
|
[16] I. Ekeland and R. Temam: Analyse convexe et problèmes variationnels.Dunod, 1974. MR 0463993 |
Reference:
|
[17] L. C. Evans and R. F. Gariepy: Measure theory and fine properties of functions.CRC Press, Boca Raton, 1992. MR 1158660 |
Reference:
|
[18] R. Finn: Equilibrium capillary surfaces.Springer, New York, 1986. Zbl 0583.35002, MR 0816345 |
Reference:
|
[19] F. Gastaldi and F. Tomarelli: Some remarks on nonlinear noncoercive variational inequalities.Boll. Un. Math. Ital. 7 (1987), 143–165. MR 0895456 |
Reference:
|
[20] C. Gerhardt: Existence, regularity, and boundary behaviour of generalized surfaces of prescribed mean curvature.Math. Z. 139 (1974), 173–198. Zbl 0316.49005, MR 0437925, 10.1007/BF01418314 |
Reference:
|
[21] C. Gerhardt: On the regularity of solutions to variational problems in $BV(\Omega )$.Math. Z. 149 (1976), 281–286. Zbl 0317.49052, MR 0417887, 10.1007/BF01175590 |
Reference:
|
[22] C. Gerhardt: Boundary value problems for surfaces of prescribed mean curvature.J. Math. Pures Appl. 58 (1979), 75–109. Zbl 0413.35024, MR 0533236 |
Reference:
|
[23] D. Gilbarg and N. Trudinger: Elliptic partial differential equations of second order.Springer, Berlin, 1983. MR 0737190 |
Reference:
|
[24] E. Giusti: Minimal surfaces and functions of bounded variations.Birkhäuser, Basel, 1984. MR 0775682 |
Reference:
|
[25] C. Goffman and J. Serrin: Sublinear functions of measures and variational integrals.Duke Math. J. 31 (1964), 159–178. MR 0162902, 10.1215/S0012-7094-64-03115-1 |
Reference:
|
[26] P. Habets and P. Omari: Positive solutions of an indefinite prescribed mean curvature problem on a general domain.Adv. Nonlinear Studies 4 (2004), 1–13. MR 2033556, 10.1515/ans-2004-0101 |
Reference:
|
[27] N. Ishimura: Nonlinear eigenvalue problem associated with the generalized capillarity equation.J. Fac. Sci. Univ. Tokyo 37 (1990), 457–466. Zbl 0723.49033, MR 1071430 |
Reference:
|
[28] T. Kusahara and H. Usami: A barrier method for quasilinear ordinary differential equations of the curvature type.Czech. Math. J. 50 (2000), 185–196. MR 1745471, 10.1023/A:1022409808258 |
Reference:
|
[29] V. K. Le: Existence of positive solutions of variational inequalities by a subsolution–supersolution approach.J. Math. Anal. Appl. 252 (2000), 65–90. Zbl 0980.49011, MR 1797845, 10.1006/jmaa.2000.6907 |
Reference:
|
[30] V. K. Le: Subsolution-supersolution method in variational inequalities.Nonlinear Analysis 45 (2001), 775–800. Zbl 1040.49008, MR 1841208, 10.1016/S0362-546X(99)00440-X |
Reference:
|
[31] V. K. Le: Some existence results on nontrivial solutions of the prescribed mean curvature equation.Adv. Nonlinear Studies 5 (2005), 133–161. Zbl 1158.53335, MR 2126734 |
Reference:
|
[32] V. K. Le and K. Schmitt: Sub-supersolution theorems for quasilinear elliptic problems: A variational approach.Electron. J. Differential Equations (2004), 1–7. MR 2108889 |
Reference:
|
[33] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693 |
Reference:
|
[34] M. Marzocchi: Multiple solutions of quasilinear equations involving an area-type term.J. Math. Anal. Appl. 196 (1995), 1093–1104. Zbl 0854.35042, MR 1365242, 10.1006/jmaa.1995.1462 |
Reference:
|
[35] J. Mawhin and M. Willem: Critical point theory and Hamiltonian systems.Springer Verlag, New York, 1989. MR 0982267 |
Reference:
|
[36] M. Miranda: Dirichlet problem with $L^1$ data for the non-homogeneous minimal surface equation.Indiana Univ. Math. J. 24 (1974), 227–241. MR 0352682, 10.1512/iumj.1975.24.24020 |
Reference:
|
[37] W. M. Ni and J. Serrin: Existence and non-existence theorems for quasilinear partial differential equations the anomalous case.Accad. Naz. Lincei, Atti dei Convegni 77 (1985), 231–257. |
Reference:
|
[38] W. M. Ni and J. Serrin: Non-existence theorems for quasilinear partial differential equations.Rend. Circ. Math. Palermo 2 (1985), 171–185. MR 0881397 |
Reference:
|
[39] E. S. Noussair, C. A. Swanson and Y. Jianfu: A barrier method for mean curvature problems.Nonlinear Anal. 21 (1993), 631–641. MR 1245866, 10.1016/0362-546X(93)90005-D |
Reference:
|
[40] L. Peletier and J. Serrin: Ground states for the prescribed mean curvature equation.Proc. Amer. Math. Soc. 100 (1987), 694–700. MR 0894440, 10.1090/S0002-9939-1987-0894440-8 |
Reference:
|
[41] W. Ziemer: Weakly differentiable functions.Springer, New York, 1989. Zbl 0692.46022, MR 1014685 |
. |