[1] Becker, M., Kucharski, D., Nessel, R. J.: 
Global approximation theorems for the Szász-Mirakyan operators in exponential weight spaces, in Linear Spaces and Approximation. Proc. Conf. Oberwolfach, 1977, Birkhäuser Verlag, Basel, 1978, pp. 319–333. 
MR 0499919[2] Brown, B. M., Elliott, D., Paget, D. F.: 
Lipschitz constants for the Bernstein polynomials of Lipschitz continuous function. J. Approx. Theory 49 (1987), 196–199. 
DOI 10.1016/0021-9045(87)90087-6 | 
MR 0874953[3] Butzer, P. L., Nessel, R. J.: 
Fourier Analysis and Approximation. vol. 1, Birkhäuser Verlag, Basel und Stuttgart, 1971. 
MR 0510857 | 
Zbl 0217.42603[4] De Vore, R. A., Lorentz, G. G.: 
Constructive Approximation. Springer-Verlag, Berlin, 1993. 
MR 1261635[5] Deeba, E., Mohapatra, R. N., Rodriguez, R. S.: 
On the degree of approximation of some singular integrals. Rend. Mat. Appl. (7) (1988), 345–355. 
MR 1012098 | 
Zbl 0677.42015[7] Khan, A.: 
On the degree of approximation of K. Picard and E. Poisson - Cauchy singular integrals. Rend. Mat. Appl. (7) (1982), 123–128. 
MR 0663719 | 
Zbl 0501.42009[9] Kirov, G. H.: 
A generalization of the Bernstein polynomials. Math. Balkanica (N.S.) 2 (2) (1992), 147–153. 
MR 1182946 | 
Zbl 0838.41017[10] Leśniewicz, A., Rempulska, L., Wasiak, J.: 
Approximation properties of the Picard singular integral in exponential weight spaces. Publ. Mat. 40 (2) (1996), 233–242. 
MR 1425617[12] Rempulska, L., Walczak, Z.: 
On modified Picard and Gauss - Weierstrass singular integrals. Ukrain. Math. Zh. 57 (11) (2005), 1577–1584. 
MR 2221659 | 
Zbl 1097.42009[13] Timan, A. F.: 
Theory of Approximation of Functions of a Real Variable. Moscow, 1960, (Russian). 
MR 0117478