Previous |  Up |  Next

Article

Title: $T_2$-frames and almost compact frames (English)
Author: Paseka, Jan
Author: Šmarda, Bohumil
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 3
Year: 1992
Pages: 385-402
.
Category: math
.
MSC: 06D99
MSC: 18B30
MSC: 54D10
MSC: 54D35
idZBL: Zbl 0779.54015
idMR: MR1179302
DOI: 10.21136/CMJ.1992.128349
.
Date available: 2009-09-24T09:22:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128349
.
Reference: [1] B. Banaschewski and R. Harting: Lattice aspects of radical ideals and choice principles.Proc. London Math. Soc. (3) 50 (1985), 384–404. MR 0779396
Reference: [2] B. Banaschewski and C. J. Mulvey: Stone-Čech compactification of locales I..Houston J. Math. 6 (1980), 301–312. MR 0597771
Reference: [3] A. Czászár: General topology.Akademiai Kiado, Budapest, 1978.
Reference: [4] E. Čech: Topological spaces.Academia, Praha, 1966. MR 0211373
Reference: [5] C. H. Dowker and D. Strauss: Separation axioms for frames.Coll. Math. Soc. Janos Bolyai 8 (1974), 223–240. MR 0394559
Reference: [6] C. H. Dowker and D. Strauss: $T_1$- and $T_2$-axioms for frames.Aspects of Topology: In Memory of Hugh Dowker, L. M. S. Lecture Notes Series No. 93, Cambridge University Press, 1985, pp. 325–335. MR 0787838
Reference: [7] C. H. Dowker and D. Strauss: Sums in the category of frames.Houston J. Math. 3 (1976), 17–32. MR 0442900
Reference: [8] H. Herrlich: Topologische Reflexionen und Coreflexionen.Lect. Notes in Math. 78, Springer-Verlag, 1968. Zbl 0182.25302, MR 0256332
Reference: [9] J. R. Isbell: Atomless parts of spaces.Math. Scand. 31 (1972), 5–32. Zbl 0246.54028, MR 0358725, 10.7146/math.scand.a-11409
Reference: [10] P. T. Johnstone: Stone spaces.Cambridge University Press, 1982. Zbl 0499.54001, MR 0698074
Reference: [11] P. T. Johnstone and Sun Shu-Hao: Weak products and Hausdorff locales.preprint.
Reference: [12] J. I. Kerstan: Verallgemeinerung eines Satzes von Tarski.Math. Nachr. 17 (1958–9), 16–18. MR 0096599
Reference: [13] I. Kříž: A constructive proof of the Tychonoff’s theorem for locales.Comm. Math, Univ. Carolinae 26, 3 (1985), 619–630. MR 0817832
Reference: [14] G. S. Murchiston and M. G. Stanley: A "$T_1$" space with no closed points and a "$T_1$" locale which is not "$T_1$".Math. Proc. Cambridge Philos. Soc. 85 (1984), 421–422. MR 0755830, 10.1017/S0305004100061739
Reference: [15] A. Pultr: Some recent results of the theory of locales.Sixth Prague Topological Symposium, 1986.
Reference: [16] J. Rosický and B. Šmarda: $T_1$-locales.Math. Proc. Cambridge Philos. Soc. 98 (1985), 81–86.
Reference: [17] H. Simmons: The lattice theoretic part of topological separation properties.Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. Zbl 0396.54014, MR 0493959
.

Files

Files Size Format View
CzechMathJ_42-1992-3_1.pdf 1.491Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo