Previous |  Up |  Next

Article

Title: Butler groups of infinite rank (English)
Author: Bican, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 44
Issue: 1
Year: 1994
Pages: 67-79
.
Category: math
.
MSC: 03C50
MSC: 20K20
MSC: 20K27
idZBL: Zbl 0812.20032
idMR: MR1257937
DOI: 10.21136/CMJ.1994.128447
.
Date available: 2009-09-24T09:36:24Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128447
.
Reference: [AH] U. Albrecht, P. Hill: Butler groups of infinite rank and axiom 3.Czech. Math. J. 37 (1987), 293–309. MR 0882600
Reference: [B1] L. Bican: Splitting in abelian groups.Czech. Math. J. 28 (1978), 356–364. Zbl 0421.20022, MR 0480778
Reference: [B2] L. Bican: Purely finitely generated groups.Comment. Math. Univ. Carolinae 21 (1980), 209–218. MR 0580678
Reference: [B3] L. Bican: Pure subgroups of Butler groups.Proceedings of the Udine Conference April 1984, R. Göbel, at al. CISM Courses and Lectures no. 287 (eds.), Springer Verlag, Wien-New York, pp. 203–213. Zbl 0569.20045, MR 0789818
Reference: [B4] L. Bican: On a class of locally Butler groups.Comment. Math. Univ. Carolinae 32 (1991), 597–600. Zbl 0748.20029, MR 1159805
Reference: [BF1] L. Bican, L. Fuchs: On abelian groups by which balanced extensions of a rational group split.J. Pure Appl. Algebra 78 (1992), 221–238. MR 1163276, 10.1016/0022-4049(92)90106-P
Reference: [BF2] L. Bican, L. Fuchs: Subgroups of Butler groups. To appear.. MR 1261020
Reference: [BS] L. Bican, L. Salce: Infinite rank Butler groups.Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math. vol. 1006, Springer-Verlag, 1983, pp. 171–189. MR 0722617
Reference: [B] M. C. R. Butler: A class of torsion-free abelian groups of finite rank.Proc. London Math. Soc. 15 (1965), 680–698. Zbl 0131.02501, MR 0218446
Reference: [DHR] M. Dugas, P. Hill, K. M. Rangaswamy: Infinite rank Butler groups II.Trans. Amer. Math. Soc. 320 (1990), 643–664. MR 0963246
Reference: [DR] M. Dugas, K. M. Rangaswamy: Infinite rank Butler groups.Trans. Amer. Math. Soc. 305 (1988), 129–142. MR 0920150, 10.1090/S0002-9947-1988-0920150-X
Reference: [DT] M. Dugas, B. Thomé: The functor Bext under the negation of CH.Forum Math. 3 (1991), 23–33. MR 1085593, 10.1515/form.1991.3.23
Reference: [F1] L. Fuchs: Infinite Abelian groups, vol. I and II.Academic Press, New York, 1973 and 1977. MR 0255673
Reference: [F2] L. Fuchs: Infinite rank Butler groups.Preprint.
Reference: [FMa] L. Fuchs, M. Magidor: Butler groups of arbitrary cardinality. To appear.. MR 1244670
Reference: [FMe] L. Fuchs, C. Metelli: Countable Butler groups.Contemporary Math. 130 (1992), 133–143. MR 1176115, 10.1090/conm/130/1176115
Reference: [FV] L. Fuchs, G. Viljoen: Note on the extensions of Butler groups.Bull. Austral. Math. Soc. 41 (1990), 117–122. MR 1043972, 10.1017/S0004972700017901
Reference: [H] W. Hodges: In singular cardinality, locally free algebras are free.Algebra Universalis 12 (1981), 205–220. Zbl 0476.03039, MR 0608664, 10.1007/BF02483879
Reference: [N] L. Nongxa: Homogeneous subgroups of completely decomposable groups.Arch. Comment. Math. 42 (1984), 208–213. Zbl 0528.20040, MR 0751497, 10.1007/BF01191177
Reference: [R] F. Richman: Butler groups, valuated vector spaces and duality.Rend. Sem. Mat. Univ. Padova 72 (1984), 13–19. Zbl 0576.20033, MR 0778329
.

Files

Files Size Format View
CzechMathJ_44-1994-1_7.pdf 1.169Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo