Previous |  Up |  Next

Article

References:
[1] C. Drossos: Ptak sums and Boolean powers. The Comenius University of Bratislava Mimeographed Notes, 1989.
[2] D. Foulis: Coupled physical systems. Foundations of Physics 7 (1989), 905–922. DOI 10.1007/BF01889305 | MR 1013911
[3] D. Foulis and M. K. Bennett: Tensor products of orthoalgebras. Order 10 (1993), 271–282. DOI 10.1007/BF01110548 | MR 1267193
[4] D. Foulis, R. Greechie and G. Rüttimann: Filters and supports in orthoalgebras. International J. of Theoretical Physics 31(5) (1992), 789–807. DOI 10.1007/BF00678545 | MR 1162623
[5] D. Foulis, C. Randall: Tensor product of manuals. An alternative to tensor product of quantum logics. Notices Amer. Math. Soc. 26(A) (1979), 558.
[6] A. Golfin: Representations and Products of Lattices, Ph. D. Thesis. University of Massachusetts, Amherst, 1987.
[7] V. Janiš: Notes on sums of Boolean algebras and logics. Demonstratio Mathematica 23(3) (1990), 699–708. DOI 10.1515/dema-1990-0317 | MR 1101530
[8] V. Janiš and Z. Riečanová: Completeness in sums of Boolean algebras and logics. International J. of Theoretical Physics 31(9) (1992), 1689–1692. DOI 10.1007/BF00671781 | MR 1183518
[9] G. Kalmbach: Orthomodular Lattices. Academic Press, New York, 1983. MR 0716496 | Zbl 0528.06012
[10] P. Pták: Summing of Boolean algebras and logics. Demonstratio Mathematica 19 (1986), 349–357. DOI 10.1515/dema-1986-0210 | MR 0895008
[11] P. Pták: Logics with given centres and state spaces. Proc. Amer. Math. Soc. 88 (1983), 106–109. DOI 10.1090/S0002-9939-1983-0691287-9 | MR 0691287
[12] S. Pulmannová: Tensor product of quantum logics. J. Math. Phys. 26 (1985), 1–5. DOI 10.1063/1.526784 | MR 0776118
[13] C. Randall and D. Foulis: New definitions and theorems. University of Massachusetts Mimeographed Notes, Amherst, 1979.
Partner of
EuDML logo