Previous |  Up |  Next

Article

Title: On the oscillation of a Volterra integral equation (English)
Author: Singh, Bhagat
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 4
Year: 1995
Pages: 699-707
.
Category: math
.
MSC: 34K15
MSC: 45D05
MSC: 45G10
MSC: 45M10
MSC: 45M15
idZBL: Zbl 0847.45003
idMR: MR1354927
DOI: 10.21136/CMJ.1995.128550
.
Date available: 2009-09-24T09:51:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128550
.
Reference: [1] G.S. Ladde, V. Lakshmikantham and B.G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments.Marcel Dekker, Inc., New York, 1987. MR 1017244
Reference: [2] H. Onose: On oscillation of Volterra integral equations and first order functional differential equations.Hiroshima Math. J. 20 (1990), 223–229. Zbl 0713.45006, MR 1063361, 10.32917/hmj/1206129176
Reference: [3] N. Parhi and N. Misra: On oscillatory and nonoscillatory behavior of solutions of Volterra integral equations.J. Math. Anal. Appl. 94 (1983), 137–149. MR 0701453, 10.1016/0022-247X(83)90009-4
Reference: [4] B.N. Shavelo: Oscillation Theory of Functional Differential Equations with Deviating Arguments.Naukova Dumka, Kiev, 1978, pp. 133–150.
Reference: [5] B. Singh: Vanishing nonoscillations of Lienard type retarded equations.Hiroshima Math. J. 7 (1977), 1–8. Zbl 0362.34053, MR 0430475, 10.32917/hmj/1206135946
.

Files

Files Size Format View
CzechMathJ_45-1995-4_8.pdf 905.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo