Previous |  Up |  Next

Article

Title: Canonical extensions of Stone and double Stone algebras: the natural way (English)
Author: Haviar, Miroslav
Author: Priestley, Hilary A.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 1
Year: 2006
Pages: 53-78
.
Category: math
.
MSC: 03G10
MSC: 06B23
MSC: 06D50
idZBL: Zbl 1164.06317
idMR: MR2217580
.
Date available: 2009-09-25T14:30:01Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128690
.
Reference: [1] CLARK D. M.-DAVEY B. A.: Natural Dualities for the Working Algebraist.Cambridge Stud. Adv. Math. 57, Cambridge Universitу Press, Cambridge, 1998. Zbl 0910.08001, MR 1663208
Reference: [2] COMER S. D.: Perfect extensions of regular double Stone algebras.Algebra Universalis 34 (1995), 96-109. Zbl 0837.06009, MR 1344956
Reference: [3] DAVEY B. A.: Dualities for Stone algebras, double Stone algebras, and relative Stone algebras.Colloq. Math. 46 (1982), 1-14. Zbl 0514.06008, MR 0672356
Reference: [4] DAVEY B. A.-PRIESTLEY H. A.: Generalized piggyback dualities and applications to Ockham algebras.Houston J. Math. 13 (1987), 101-117. MR 0904949
Reference: [5] DAVEY B. A.-PRIESTLEY H. A.: Introduction to Lattices and Order.(2nd ed.), Cambridge Universitу Press, Cambridge, 2002. Zbl 1002.06001, MR 1902334
Reference: [6] DAVEY B. A.-WERNER H.: Dualities and equivalences for varieties of algebras.In: Contributions to Lattice Theorу (Szeged, 1980) (A. P. Huhn, E. T. Schmidt, eds.), Colloq. Math. Soc. János Bolуai 33, North-Holland, Amsterdam, 1983, pp. 101-275. Zbl 0503.08011, MR 0724265
Reference: [7] GALLI A.-REYES G. E.-SAGASTUME M.: Completeness theorems via the double dual functor.Studia Logica 64 (2000), 61-81. Zbl 0948.03061, MR 1744692
Reference: [8] GEHRKE M.-HARDING J.: Bounded lattice expansions.J. Algebra 238 (2001), 345-371. Zbl 0988.06003, MR 1822196
Reference: [9] GEHRKE M.-NAGAHASHI H.-VENEMA Y.: A Sahlqvist theorem for distributive modal logic.Ann. Pure Appl. Logic 131 (2005), 65-102. Zbl 1077.03009, MR 2097223
Reference: [10] GEHRKE M.-JÓNSSON B.: Bounded distributive lattice expansions.Math. Scand. 94 (2004), 13-45. Zbl 1077.06008, MR 2032334
Reference: [11] GIERZ G., al.: Continuous Lattices and Domains.Encуclopedia Math. Appl. 93, Cambridge Universitу Press, Cambridge, 2003. Zbl 1088.06001, MR 1975381
Reference: [12] GOLDBLATT R.: Varieties of complex algebras.Ann. Pure Appl. Logic 44 (1989), 174-242. Zbl 0722.08005, MR 1020344
Reference: [13] GRAMAGLIA H.-VAGGIONE D.: Birkhoff-like sheaf representations for varieties of lattice expansions.Studia Logica 56 (1996), 113-131. MR 1382170
Reference: [14] JÓNSSON B.-TARSKI A.: Boolean algebras with operators I; II.Amer. J. Math. 73; 74 (1951; 1952), 891-939; 127-162. MR 0044502
Reference: [15] KATRIŇÁK T.: Stone lattices.PhD Thesis, Comenius Universitу, Bratislava, 1965. (Slovak)
Reference: [16] KATRIŇÁK T.: The structure of distributive double p-algebras: regularity and congruences.Algebra Universalis 3 (1973), 283-290. Zbl 0276.08005, MR 0332598
Reference: [17] KATRIŇÁK T.: A new proof of the construction theorem for Stone algebras.Proc. Amer. Math. Soc. 40 (1973), 75-78. Zbl 0258.06006, MR 0316335
Reference: [18] KATRIŇÁK T.: Injective double Stone algebras.Algebra Universalis 4 (1974), 259-267. Zbl 0302.06022, MR 0373987
Reference: [19] KATRIŇÁK T.: Construction of regular double p-algebras.Bull. Soc. Roy. Sci. Liege 43 (1974), 238-246. Zbl 0314.06004, MR 0373984
Reference: [20] PRIESTLEY H. A.: Stone lattices: a topological approach.Fund. Math. 84 (1974), 127-143. Zbl 0323.06012, MR 0340136
Reference: [21] PRIESTLEY H. A.: Natural dualities for varieties of n-valued Lukasiewicz algebras.Studia Logica 54 (1995), 333-370. Zbl 0826.06007, MR 1337007
Reference: [22] PRIESTLEY H. A.: Varieties of distributive lattices with unary operations I.J. Aust. Math. Soc. Ser. A 63 (1997), 165-207. Zbl 0907.06008, MR 1475560
Reference: [23] PRIESTLEY H. A.-SANTOS R.: Dualities for varieties of distributive lattices with unary operations II.Port. Math. 55 (1998), 135-166. MR 1629618
Reference: [24] THOMASON S. K.: Categories of frames for modal logic.J. Symbolic Logic 40 (1975), 439-442. Zbl 0317.02012, MR 0381940
Reference: [25] VARLET J.: A regular variety of type (2, 2, 1, 1, 0).Algebra Universalis 2 (1972), 218-223. Zbl 0256.06004, MR 0325477
.

Files

Files Size Format View
MathSlov_56-2006-1_6.pdf 1.411Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo