Previous |  Up |  Next

Article

Title: On property $K$ in $F$-spaces (English)
Author: Burzyk, Józef
Author: Kamiński, Andrzej
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 49
Issue: 2
Year: 1999
Pages: 209-222
.
Category: math
.
MSC: 40A05
MSC: 46A16
idZBL: Zbl 0961.46002
idMR: MR1697013
.
Date available: 2009-09-25T11:36:37Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128699
.
Reference: [1] ALEXIEWICZ A.: On sequences of operations, (II).Studia Math. 11 (1950), 200-236. Zbl 0039.12002, MR 0039170
Reference: [2] ANTOSIK P.-BURZYK J.: Sequential conditions for barrelledness and bornology.Bull. Polish Acad. Sci. Math. 35 (1987), 151-155. Zbl 0642.46003, MR 0939007
Reference: [3] ANTOSIK P.-SWARTZ C.: Matrix Methods in Analysis.Lecture Notes in Math. 1113, Springer-Verlag, Berlin, 1985. Zbl 0564.46001, MR 0781343
Reference: [4] BURZYK J.: An example of a non-complete normed N-space.Bull. Polish Acad. Sci. Math. 35 (1987), 449-455. Zbl 0647.46001, MR 0939006
Reference: [5] BURZYK J.: Independence of sequences in convergence linear spaces.In: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. of the Sixth Prague Topological Symposium 1986, Heldermann Verlag, Berlin, 1988, pp. 49-59. MR 0952590
Reference: [6] BURZYK J.: Decompositions of F-spaces into spaces with properties K, N, or κ.In: Generalized Functions and Convergence, Memorial Volume for Professor Jan Mikusiňski, World Scientific, Singapore, 1990, pp. 317-329. MR 1085519
Reference: [7] BURZYK J.-KAMIŇSKI A.: Operations on convergences.Tatra Mt. Math. Publ. 14 (1998), 199-212. Zbl 0938.54005, MR 1651212
Reference: [8] BURZYK J.-KLIS C.-LIPECKI Z.: On metrizable Abelian groups with a completeness-type property.Colloq. Math. 49 (1984), 33-39. Zbl 0552.46001, MR 0774847
Reference: [9] CHERESIZ V. M.: On the weak completeness of the dual to a convergence space.Dokl. Akad. Nauk SSSR 201 (1971), 548-551. (Russian) MR 0295021
Reference: [10] DREWNOWSKI L.: A solution to a problem of De Wilde and Tsirulnikov.Manuscripta Math. 37 (1982), 61-64. Zbl 0486.46003, MR 0649564
Reference: [11] DREWNOWSKI L.-LABUDA I.-LIPECKI Z.: Existence of quasi-bases for separable topological linear spaces.Arch. Math. (Basel) 37 (1981), 454-456. Zbl 0491.46005, MR 0643288
Reference: [12] DREWNOWSKI L.-LIPECKI Z.: On some dense subspaces of topological linear spaces. II.Comment. Math. Prace Mat. 28 (1989), 175-188. Zbl 0770.46001, MR 1024936
Reference: [13] FOGED L.: The Baire category theorem for Fréchet groups in which every null sequence has a summable subsequence.Topology Proc. 8 (1983), 259-266. Zbl 0557.22002, MR 0765082
Reference: [14] KLIS, C: An example of noncomplete normed (K)-space.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 415-420. Zbl 0393.46017, MR 0500088
Reference: [15] LABUDA I.-LIPECKI Z.: On subseries convergent series and m-quasi-bases in topological linear spaces.Manuscripta Math. 38 (1982), 87-98. Zbl 0496.46006, MR 0662771
Reference: [16] LIPECKI Z.: On some dense subspaces of topological linear spaces.Studia Math. 77 (1984), 413-421. Zbl 0552.46002, MR 0751762
Reference: [17] MAZUR S.-ORLICZ W.: Sur les espaces metriques lineaires (II).Studia Math. 13 (1953), 137-179. Zbl 0052.11103, MR 0068730
Reference: [18] ROLEWICZ S.: Metric Linear Spaces.(2nd ed.), PWN-Reidel, Warszawa-Dordrecht, 1984. MR 0802450
Reference: [19] SOBOLEV S. L.: Introduction to the Theory of Cubature Formulae.Nauka, Moscow, 1974. (Russian) MR 0478560
.

Files

Files Size Format View
MathSlov_49-1999-2_8.pdf 674.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo