Previous |  Up |  Next

Article

Title: On one-point $\cal I$-compactification and local $\cal I$- compactness (English)
Author: Rose, David A.
Author: Hamlett, T. R.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 3
Year: 1992
Pages: 359-369
.
Category: math
.
MSC: 54D30
MSC: 54D35
MSC: 54D45
idZBL: Zbl 0767.54020
idMR: MR1182966
.
Date available: 2009-09-25T10:40:27Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128765
.
Reference: [1] RANČIN D. V.: Compactness modulo an ideal.Soviet Math. Dokl. 13(1) (1972), 193-197. Zbl 0254.54023, MR 0296899
Reference: [2] NEWCOMB R. L.: Topologies Which are Compact Modulo an Ideal.Ph.D. dissertation, Univ. of Cal. at Santa Barbara, 1967. MR 2939797
Reference: [3] HAMLETT T. R, JANKOVIČ D.: Compactness with respect to an ideal.Boll. Un. Mat. Ital. B (7) 4 (1990), 849-861. Zbl 0741.54001, MR 1086708
Reference: [4] HAMLETT T. R., ROSE D.: Local compactness with respect to an ideal.Kyung Pook Math. J. 32 (1992), 31-43. Zbl 0767.54019, MR 1170488
Reference: [5] PORTER J.: On locally H-closed spaces.Proc. London Math. Soc. (3) 20 (1970), 193-204. Zbl 0189.53404, MR 0256354
Reference: [6] VAIDYANATHASWAMY R.: Set Topology.Chelsea Publishing Company, New York, 1960. MR 0115151
Reference: [7] NJÅSTAD O.: Classes of topologies defined by ideals.Matematisk Institutt, Universitetet I Trondheim, (Preprint).
Reference: [8] NJÅSTAD O.: Remarks on topologies defined by local properties.Det Norske Videnskabs-Akademi, Avh. I Mat. Naturv, Klasse, Ny Serie No. 8 (1966), 1-16. Zbl 0148.16504, MR 0215278
Reference: [9] JANKOVIČ D., HAMLETT T. R.: New topologies from old via ideals.Amer. Math. Monthly 97 (1990), 255-310. Zbl 0723.54005, MR 1048441
Reference: [10] JANKOVIČ D., HAMLETT T. R.: Compatible extensions of ideals.Boll. Un. Mat. Ital. B (7), (To appear). Zbl 0818.54002, MR 1191948
Reference: [11] VAIDYANATHASWAMY R.: The localization theory in set-topology.Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51-61. MR 0010961
Reference: [12] SEMADENI Z.: Functions with sets of points of discontinuity belonging to a fixed ideal.Fund. Math. LII (1963), 25-39. Zbl 0146.12302, MR 0149259
Reference: [13] OXTOBY J. C.: Measure and Category.Springer-Verlag, New York, 1980. Zbl 0435.28011, MR 0584443
Reference: [14] SAMUELS P.: A topology formed from a given topology and ideal.J. London Math. Soc. (2) 10 (1975), 409-416. Zbl 0303.54001, MR 0375200
Reference: [15] BANKSTON P.: The total negation of a topological property.Illinois J. Math. 23 (1979), 241-252. Zbl 0405.54003, MR 0528560
Reference: [16] KELLEY J. T.: General Topology.D. Van Nostrand Company, Inc., Princeton, 1955. Zbl 0066.16604, MR 0070144
.

Files

Files Size Format View
MathSlov_42-1992-3_12.pdf 569.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo