Title:
|
On one-point $\cal I$-compactification and local $\cal I$- compactness (English) |
Author:
|
Rose, David A. |
Author:
|
Hamlett, T. R. |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
42 |
Issue:
|
3 |
Year:
|
1992 |
Pages:
|
359-369 |
. |
Category:
|
math |
. |
MSC:
|
54D30 |
MSC:
|
54D35 |
MSC:
|
54D45 |
idZBL:
|
Zbl 0767.54020 |
idMR:
|
MR1182966 |
. |
Date available:
|
2009-09-25T10:40:27Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128765 |
. |
Reference:
|
[1] RANČIN D. V.: Compactness modulo an ideal.Soviet Math. Dokl. 13(1) (1972), 193-197. Zbl 0254.54023, MR 0296899 |
Reference:
|
[2] NEWCOMB R. L.: Topologies Which are Compact Modulo an Ideal.Ph.D. dissertation, Univ. of Cal. at Santa Barbara, 1967. MR 2939797 |
Reference:
|
[3] HAMLETT T. R, JANKOVIČ D.: Compactness with respect to an ideal.Boll. Un. Mat. Ital. B (7) 4 (1990), 849-861. Zbl 0741.54001, MR 1086708 |
Reference:
|
[4] HAMLETT T. R., ROSE D.: Local compactness with respect to an ideal.Kyung Pook Math. J. 32 (1992), 31-43. Zbl 0767.54019, MR 1170488 |
Reference:
|
[5] PORTER J.: On locally H-closed spaces.Proc. London Math. Soc. (3) 20 (1970), 193-204. Zbl 0189.53404, MR 0256354 |
Reference:
|
[6] VAIDYANATHASWAMY R.: Set Topology.Chelsea Publishing Company, New York, 1960. MR 0115151 |
Reference:
|
[7] NJÅSTAD O.: Classes of topologies defined by ideals.Matematisk Institutt, Universitetet I Trondheim, (Preprint). |
Reference:
|
[8] NJÅSTAD O.: Remarks on topologies defined by local properties.Det Norske Videnskabs-Akademi, Avh. I Mat. Naturv, Klasse, Ny Serie No. 8 (1966), 1-16. Zbl 0148.16504, MR 0215278 |
Reference:
|
[9] JANKOVIČ D., HAMLETT T. R.: New topologies from old via ideals.Amer. Math. Monthly 97 (1990), 255-310. Zbl 0723.54005, MR 1048441 |
Reference:
|
[10] JANKOVIČ D., HAMLETT T. R.: Compatible extensions of ideals.Boll. Un. Mat. Ital. B (7), (To appear). Zbl 0818.54002, MR 1191948 |
Reference:
|
[11] VAIDYANATHASWAMY R.: The localization theory in set-topology.Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51-61. MR 0010961 |
Reference:
|
[12] SEMADENI Z.: Functions with sets of points of discontinuity belonging to a fixed ideal.Fund. Math. LII (1963), 25-39. Zbl 0146.12302, MR 0149259 |
Reference:
|
[13] OXTOBY J. C.: Measure and Category.Springer-Verlag, New York, 1980. Zbl 0435.28011, MR 0584443 |
Reference:
|
[14] SAMUELS P.: A topology formed from a given topology and ideal.J. London Math. Soc. (2) 10 (1975), 409-416. Zbl 0303.54001, MR 0375200 |
Reference:
|
[15] BANKSTON P.: The total negation of a topological property.Illinois J. Math. 23 (1979), 241-252. Zbl 0405.54003, MR 0528560 |
Reference:
|
[16] KELLEY J. T.: General Topology.D. Van Nostrand Company, Inc., Princeton, 1955. Zbl 0066.16604, MR 0070144 |
. |