Title:
|
Congruence of Ankeny-Artin-Chowla type for cyclic fields (English) |
Author:
|
Jakubec, Stanislav |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
1998 |
Pages:
|
323-326 |
. |
Category:
|
math |
. |
MSC:
|
11R29 |
idZBL:
|
Zbl 0939.11036 |
idMR:
|
MR1647635 |
. |
Date available:
|
2009-09-25T11:31:05Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128792 |
. |
Reference:
|
[1] FENG, KE QIN.: The Ankeny-Artin-Chowla formula for cubic cyclic number fields.J. China Univ. Sci. Тech. 12 (1982), 20-27. MR 0705871 |
Reference:
|
[2] IТO H.: Congruence relations of Ankeny-Artin-Chowla type for pure cubic field.Nagoya Math. J. 96 (1984), 95-112. MR 0771071 |
Reference:
|
[3] JAKUBEC S.: The congruence for Gauss's period.J. Number Тheory 48 (1994), 36-45. MR 1284872 |
Reference:
|
[4] JAKUBEC S.: Congruence of Ankeny-Artin-Chowla type for cyclic fields of prime degree l.Math. Proc. Cambridge Philos. Soc. 119 (1996), 17-22. Zbl 0853.11085, MR 1356153 |
Reference:
|
[5] KAMEI M.: Congruences of Ankeny-Artin-Chowla type for pure quartic and sectic fields.Nagoya Math. J. 108 (1987), 131-144. Zbl 0634.12009, MR 0920331 |
Reference:
|
[6] MARKO F.: On the existence of p-units and Minkowski units in totally real cyclic fields.Abh. Math. Sem. Univ. Hamburg (To appeaг). Zbl 0869.11087, MR 1418221 |
Reference:
|
[7] SCHERTZ R.: Über die analitische Klassenzahlformel für realle abelsche Zahlkorper.J. Reine Angew. Math. 307-308 (1979), 424-430. MR 0534237 |
Reference:
|
[8] ZHANG, XIAN KE.: Ten formulae of type Ankeny-Artin-Chowla for class number of general cyclic quartic fields.Sci. China Ser. A 32 (1989), 417-428. MR 1050029 |
. |